

Applications of Near infrared reflectance spectroscopy to quantitative and qualitative characteristics of tobacco blends

Gilles FIGUÉRES Altadis, Research Centre, Fleury Les Aubrais

"6th Bergerac Tobacco Scientific Meeting" 1st – 2nd September 2005

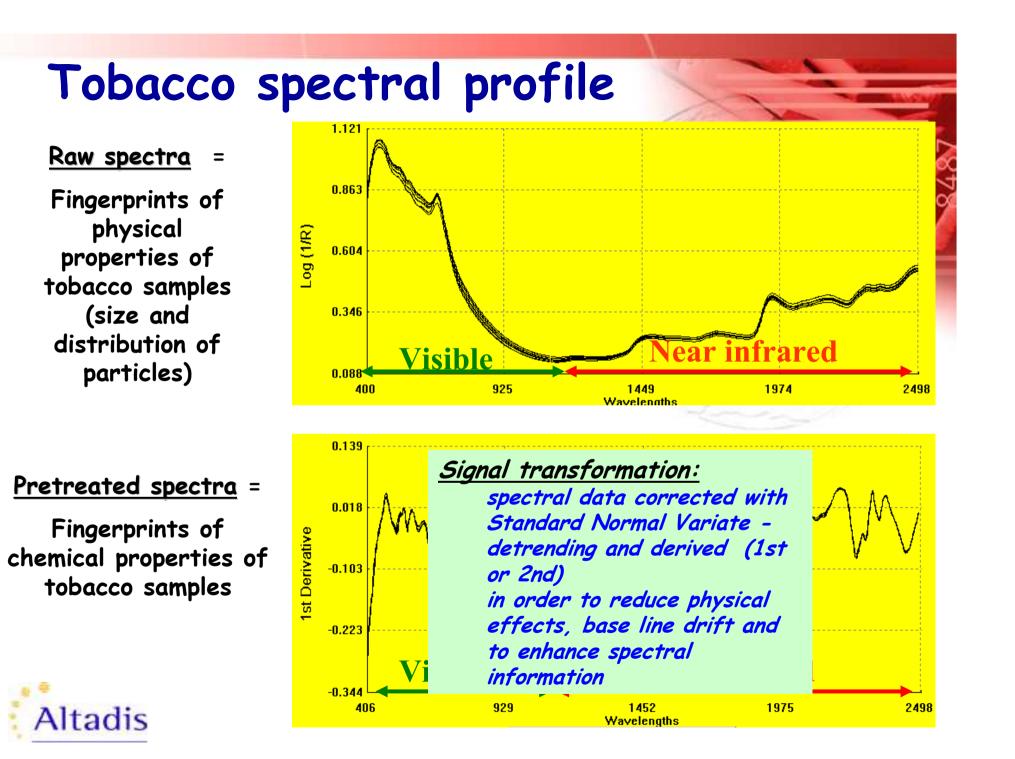
Spectral profile

- Near infrared spectra can be considered as multivariate fingerprints of analysed samples
- The spectrum is affected by:
 - Non-specific light scattering from surface of sample
 - Chemical composition of sample
 - CH, OH, NH molecular bonds with specific vibrational frequency to describe spectral absorption information

A reflectance spectrum = a measurement of total chemical and physical composition of material

Visible and near-infrared diffuse reflectance analysis

- Dried and ground tobacco samples or "as is" cut tobacco from products scanned by using a nir grating spectrometer (Versatile Foss NIRSystems)
- Data collected at 2 nm intervals
 - wavelength range 400 to 2500 nm
 - raw spectra stored as (log 1/reflectance):
 - 1050 data points collected / sample
 - average of duplicate scans



NIRS applications

- Quantitative approach: prediction of tobacco chemical composition
 - Multivariate regression methods: as Partial Least Squares
 - development of calibration models where spectral response from a set of samples is correlated with known chemical concentration from laboratory analyses in order to try to replace conventional chemical methods (time consuming, laborious and costly procedures)
- → Qualitative approach: using only tobacco spectral data
 - Descriptive or comparative method:
 - Principal Component Analysis (PCA) for ex.
 - Discriminant method (or pattern recognition method):
 - Classification of tobacco products: in order to classify an unknown material on the basis of its spectral features without the need for chemical data

QUANTITATIVE APPROACH

First application

Near infrared spectroscopy in prediction of chemical characteristics of raw tobacco

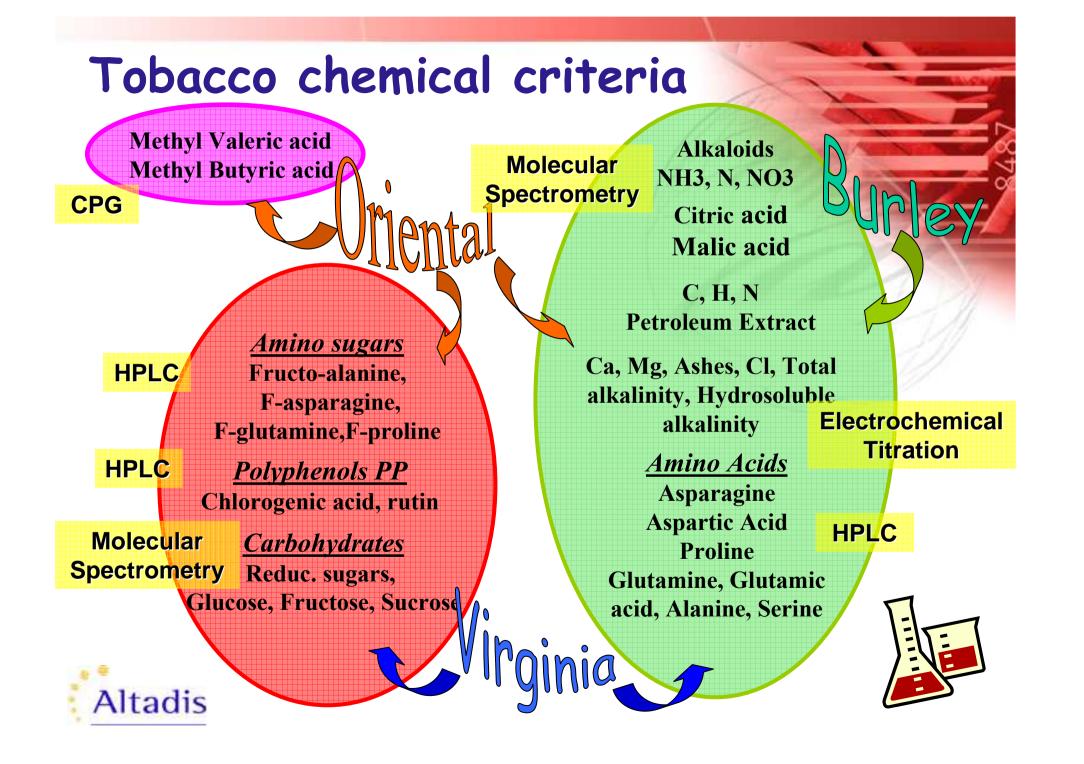
Objective

Assessment of potential of near-infrared reflectance spectroscopy as alternative analytical method for simultaneous determination of chemical compound contents in tobacco deliveries :

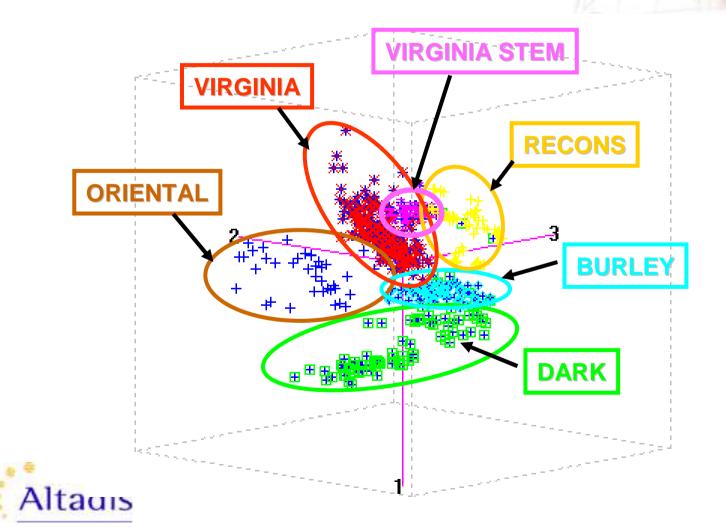
- develop statistical multivariate calibrations between chemical reference values and spectral data of tobacco
- evaluate performances of prediction models

Studied materials

- > Tobacco types origin grades: data base
 - Virginia : 1100 lots
 - Burley: 560 lots
 - Oriental: 300 lots
 - Dark: 960 lots
 - Recons (70 lots) and Virginia stems (50 lots)
- Seven delivery years of tobacco : 1996 to 2002
- Specific analytical and statistical approach per each tobacco category



Score plots of the three first principal components space for spectral tobacco sample types



Mathematical treatments

Spectral signal transformations

+ regression calibrations

		T1	T2	Т3	T4	T5
Regre	ssion method	MPLS	PLS	PCR	MPLS	MPLS
Maxi nb of MLR terms		16	16	16	5	16
Spectral data	derivation-smoothing	1.4.4	1.4.4	1.4.4	1.4.4	2.8.6
pretreatment	scatter correction	SNV D				
Omitting samples cycles		2	2	2	2	2
Spectra range	400 - 2500 nm	VIS+NIR	VIS+NIR	VIS+NIR	VIS+NIR	VIS+NIR
	1100 - 2500 nm	NIR	NIR	NIR	NIR	NIR

Altadis

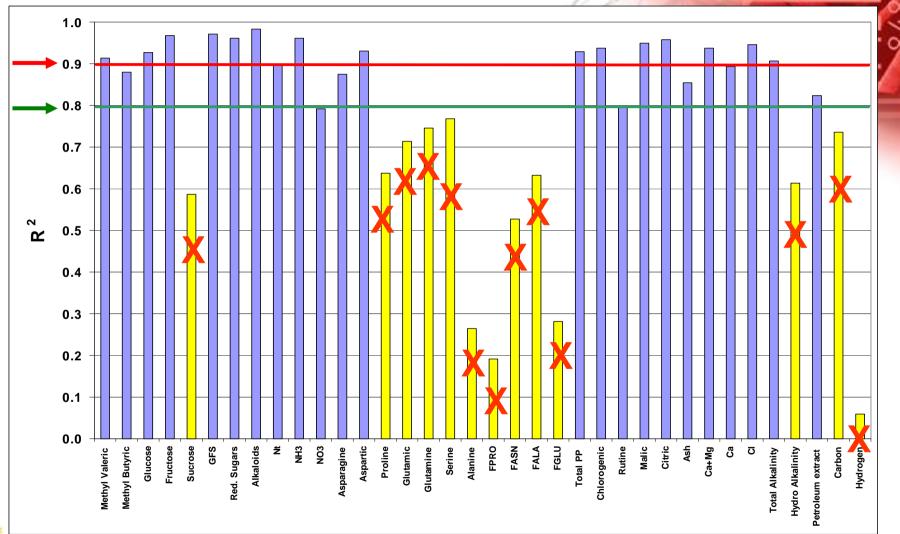
		Т6	T7	Т8	Т9	T10	T11
Regression method		MPLS	MPLS	MPLS	MPLS	MPLS	MPLS
Maxi nb of MLR terms		16	16	16	16	16	16
Spectral data	derivation-smoothing	3.10.10	4.10.10	0.1.1	1.4.4	1.4.4	1.4.4
pretreatment	scatter correction	SNV D	SNV D	SNV D	SNV	DETREND	MSC
Omitting samples cycles		2	2	2	2	2	2
Spectra range	400 - 2500 nm	VIS+NIR	VIS+NIR	VIS+NIR	VIS+NIR	VIS+NIR	VIS+NIR
	1100 - 2500 nm	NIR	NIR	NIR	NIR	NIR	NIR

Performance of calibration models Test Samples of 2003 Oriental tobacco deliveries

			GH = 1.82	NH = 1.18	GH = 1.39 NH = 0.73		
			400 - 25	400 - 2500 nm		1100 - 2500 nm	
Chemical compound	Content range		RMSEP	R ²	RMSEP	R ²	
leletile eside nom		n =	= 39	10-K		~	
Volatile acids ppm Methyl Valeric	375	3707	241	0.903	220	0.914	
					228		
Methyl Butyric	367	1738	130	0.853	117	0.879	
Carbohydrates %				11			
Glucose	1.45	6.13	0.40	0.904	0.40	0.927	
Fructose	2.31	8.88	0.28	0.958	0.25	0.968	
Sucrose	0.00	2.43	0.35	0.717	0.49	0.586	
GFS	4.11	16.77	0.61	0.957	0.52	0.972	
Red. Sugars	5.30	18.39	0.67	0.951	0.62	0.961	
Nitrogen compounds %							
Alkaloids	0.67	3.02	0.10	0.978	0.09	0.983	
Nt	1.94	3.70	0.14	0.899	0.15	0.899	
NH3	0.06	0.42	0.02	0.952	0.02	0.961	
NO3	0.04	1.00	0.13	0.68	0.20	0.792	
Amino acids %							
Aspartic	0.03	0.17	0.03	0.872	0.03	0.875	
Asparagine	0.18	1.42	0.08	0.931	0.08	0.931	
Proline	0.84	1.97	0.12	0.735	0.15	0.638	
Glutamic	0.03	0.12	0.02	0.746	0.02	0.713	
Glutamine	0.07	0.41	0.04	0.819	0.05	0.746	
Serine	0.01	0.15	0.01	0.827	0.01	0.768	
Alanine	0.07	0.14	0.02	0.168	0.02	0.265	

			GH = 1.82	NH = 1.18	ACCO GH = 1.39	NH = 0.73
			400 - 25	500 nm	1100 - 2	500 nm
Chemical compound	Conten	t range	RMSEP	R ²	RMSEP	R ²
Amino sugars %		n :	= 39	Pa-		
FPRO	0.22	0.89	0.23	0.175	0.19	0.192
FASN	0.14	0.49	0.05	0.544	0.05	0.527
FALA	0.09	0.37	0.09	0.349	0049	0.633
FGLU	0.03	2.37	0.36	0.342	0.37	0.282
Polyphenols %				100		100
Total PP	0.84	2.83	0.13	0.954	0.17	0.928
Chlorogenic	0.42	1.60	0.77	0.971	0.11	0.938
Rutine	0.32	1.20	0.11	0.748	0.10	0.796
Organic acids %			·			
Malic	2.64	8.64	0.34	0.952	0.35	0.949
Citric	0.53	3.18	0.15	0.958	0.17	0.957
Inorganics/Organics		·				
Ash %	11.10	21.10	1.03	0.807	0.89	0.854
Ca+Mg meq%	137.00	276.00	10.31	0.922	9.53	0.938
Ca %	1.83	4.52	0.21	0.886	0.20	0.894
CI %	0.26	1.83	0.08	0.945	0.09	0.946
Total Alkalinity meq%	144.0	309.0	13.0	0.892	12.3	0.906
Hydro Alkalinity meq%	0.0	42.0	8.8	0.584	8.5	0.614
Miscellaneous						
Petroleum extract %	2.60	8.40	0.53	0.798	0.50	0.823
Carbon %	39.65	44.91	0.83	0.697	0.77	0.735
Hydrogen %	3.75	5.61	0.39	0.067	0.41	0.06

Performance of calibration models Test Samples of 2003 Oriental tobacco deliveries



QUANTITATIVE APPROACH Second application

Near infrared spectroscopy in prediction of tobacco blend additives Example of Humectants

Humectant quantification 1.2 propylene glycol (PRGL) and glycerol (GLY)

Principle of Humectant Reference Analysis

A methanol extract of the tobacco sample is prepared and PRGL and GLY are determined in that extract by quantitative gas chromatography.

Results are reported as percent (m/m)

Calibration statistics for humectants

					-	1000		C. and the second		
	GROUND SAMPLE					CUT TOBACCO				
	VIS+NIR		NIR		VIS+NIR		NIR			
	GLY	PRGL	GLY PRGL			GLY	PRGL	GLY	PRGL	
	Ca	alibration per	rformance values			Calibration performance values				
Ν	69	69	69	69		68	68	68	68	
Mean%	1.5654	1.1909	1.5654	0.1909		1.5616	1.2071	1.5616	1.2071	
SEC%	0.1931	0.1404	0.1862	0.1162		0.2261	0.1275	0.2013	0.1417	
R ² cal	0.9774	0.9824	0.979	0.9879		0.9695	0.9855	0.9758	0.9821	
SECV%	0.3334	0.2387	0.2763	0.1842		0.421	0.2701	0.3136	0.2346	
R ² CV	0.9331	0.9495	0.954	0.97		0.8948	0.9361	0.9416	0.9518	
	Va	Validation performance values				Validation performance values				
Slope	0.969	0.997	0.972	0.998		1.064	1.019	1.044	0.982	
R2	0.904	0.968	0.947	0.986		0.901	0.979	0.966	0.975	
SEP%	0.276	0.149	0.207	0.1		0.287	0.121	0.175	0.136	
SEP©%	0.282	0.15	0.21	0.101		0.292	0.124	0.172	0.137	
	average NH =	average NH = 0.135		average NH = 0.079		average NH =	= 0.213	average NH = 0.140		
	average GH =	= 0.771	average GH = 0.620			average GH :	=0.754	average GH =0.578		

Standard error of reference method: Glycérol = 0.23%, PRGL = 0.08%

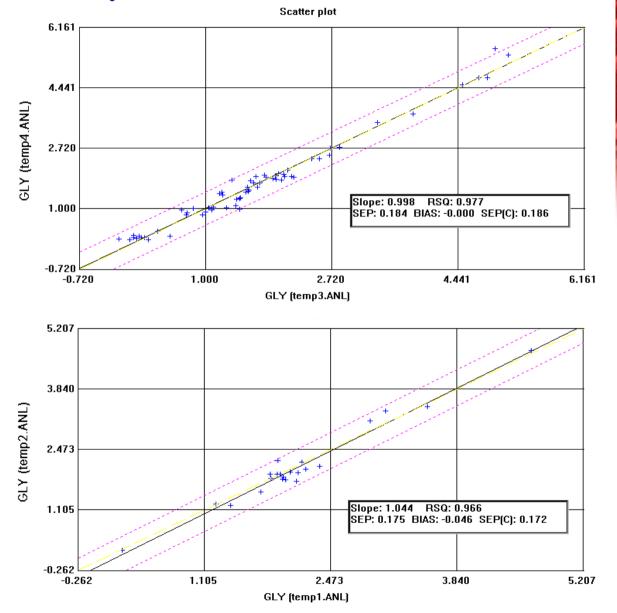
Chemical values vs. predicted NIRS values

Application to cut tobacco of nir wavelength range model

Calibration set

GLYCEROL

Validation set



Chemical values vs. predicted NIRS values

4.868

Application to cut tobacco of nir wavelength range model

Calibration set

1.2 PROPYLENE GLYCOL

Validation set

3.540 PRGL (temp6.ANL) 2.211 0.882 Slope: 1.004 RSQ: 0.983 SEP: 0.130 BIAS: 0.000 SEP(C): 0.131 -0.447 -0.447 0.882 2.211 3.540 4.868 PRGL (temp5.ANL) σταιτεί μισι 4.851 3.556 PRGL (temp4.ANL) 2.261 Slope: 0.982 RSQ: 0.975 0.967 SEP: 0.136 BIAS: 0.026 SEP(C): 0.137 -0.3280.967 3.556 -0.3282.261 4.851 PRGL (temp3.ANL)

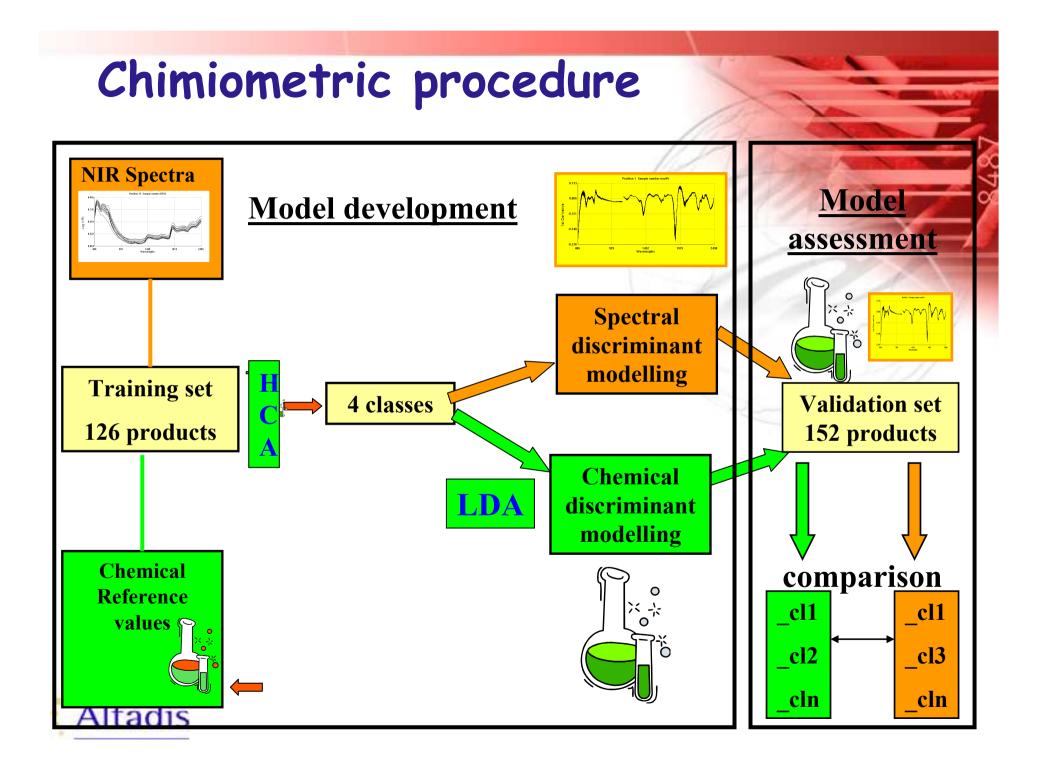
Scatter plot

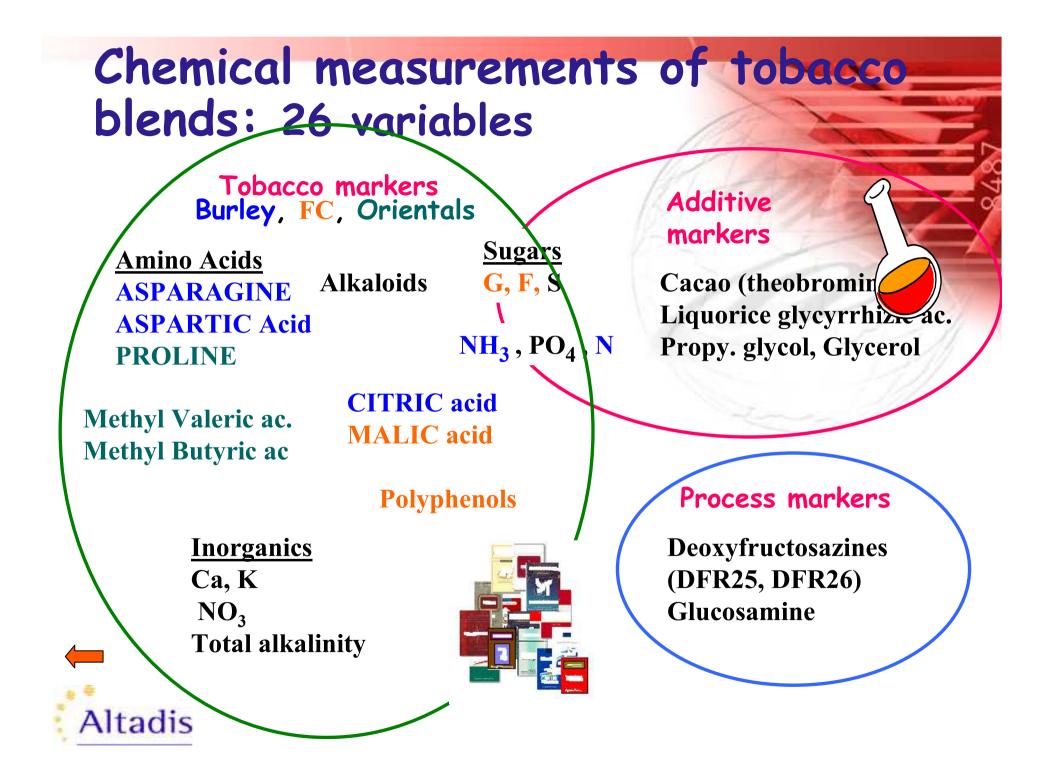
QUALITATIVE APPROACH First application

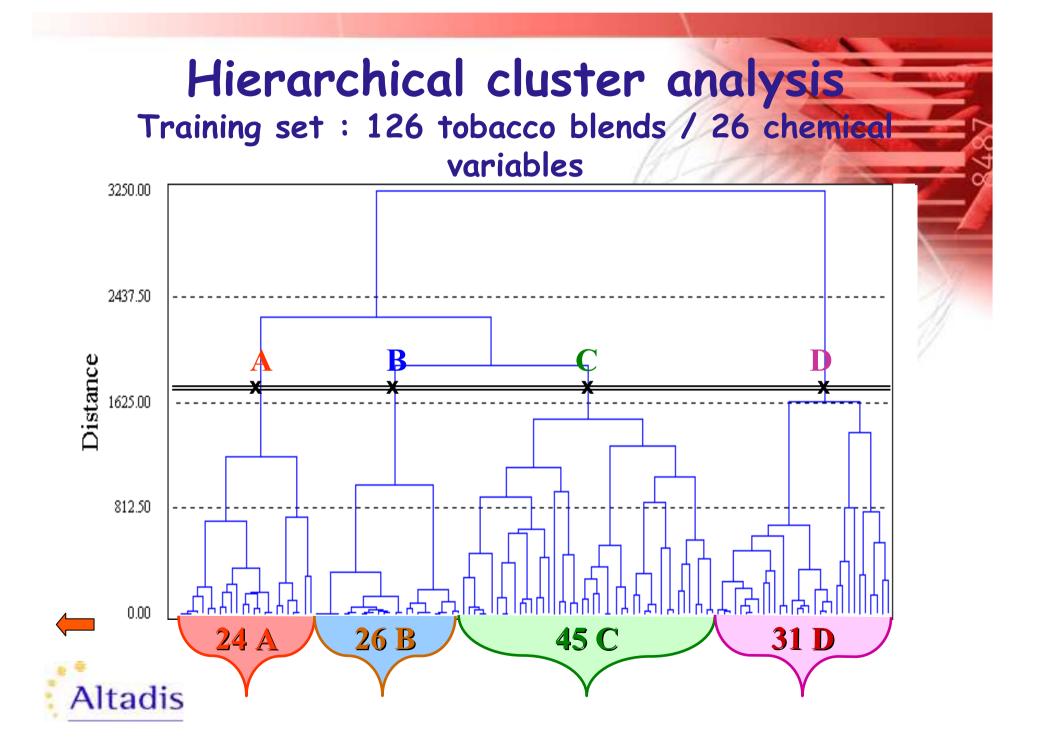
Near infrared spectroscopy and pattern recognition methods for classification of commercial tobacco blends

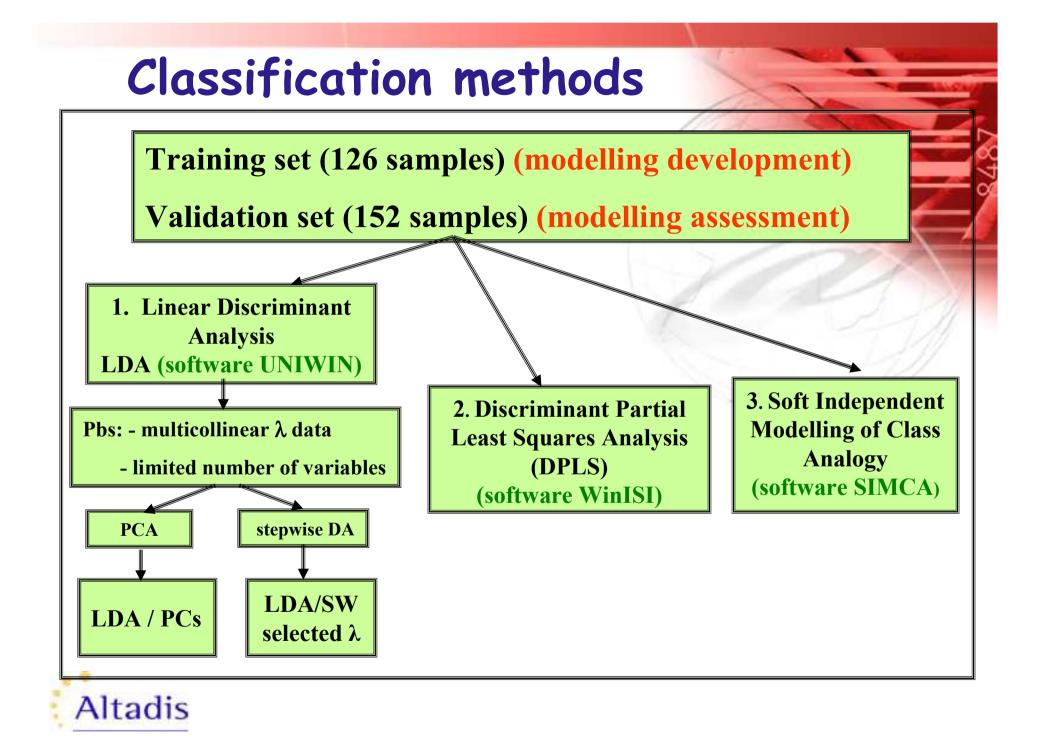
Objective

- Evaluate potential of near infrared spectroscopy to be a qualitative tool to classify tobacco blends of commercial products on basis of spectral features:
 - apply different supervised pattern recognition methods to NIR spectra of finished products (a priori knowledge about category membership of samples)
 - compare the performance of these multivariate data models



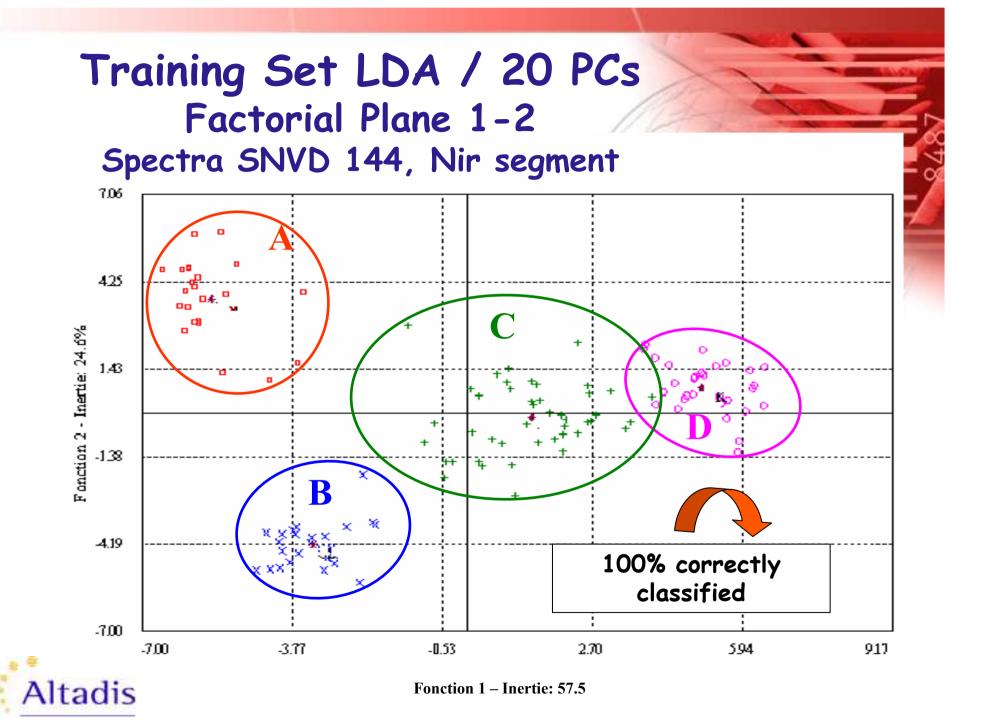




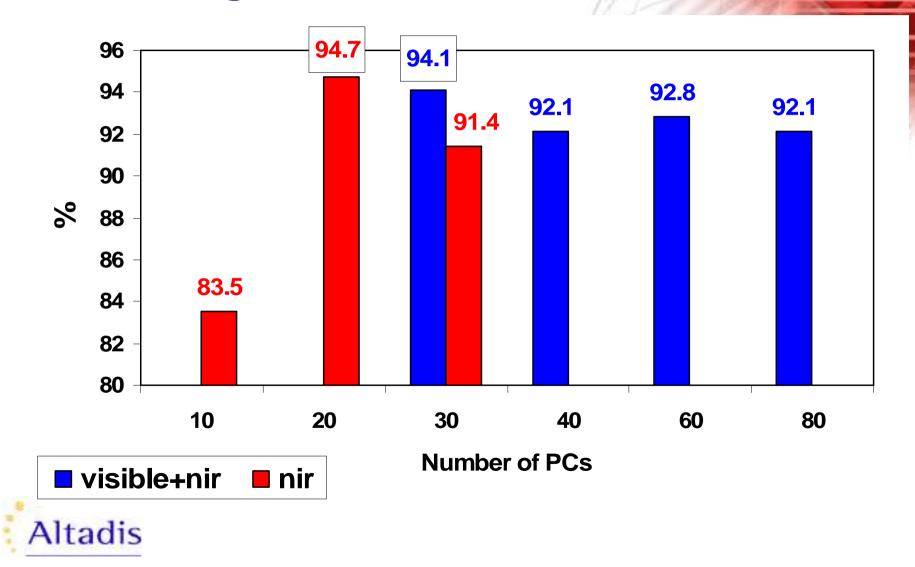


Linear Discriminant Analysis on principal components (LDA/PCS

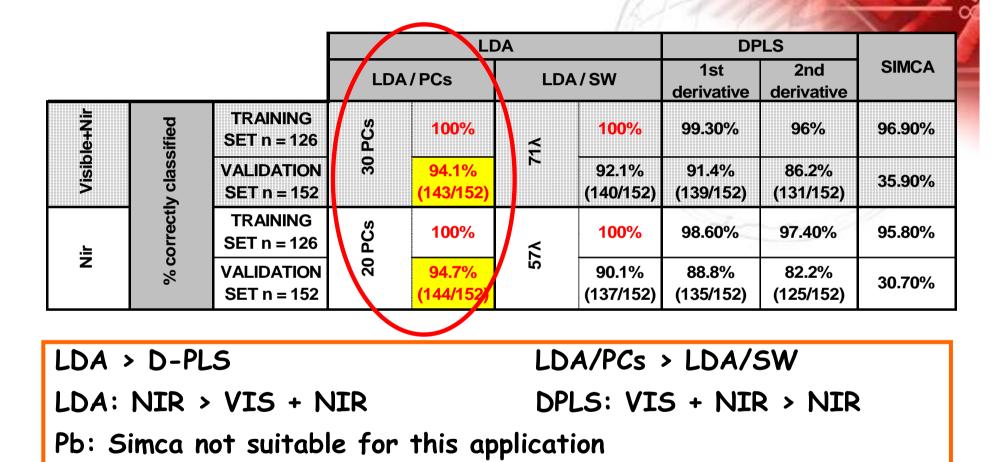
- Methodology:
 - data compression step: spectra of training set subjected to a principal component analysis (PCA) to generate orthogonal eigenvectors and sample scores
 - LDA applied to the principal component scores of samples of training set and validation set
 - samples of validation set are considered as supplementary observations
- Application: investigation to find the optimal number of PCs in order to obtain an efficient LDA
 - visible + nir : 30, 40, 60, 80 PCs
 - nir: 10, 20, 30 PCs



Validation Set : % well classified according to the number of PCs



Main results of the study Study's main results



QUALITATIVE APPROACH Second application

Near infrared spectroscopy and quality control in manufacturing plant

Quality control near infrared measurements of tobacco materials in manufacturing plant

- <u>Objective</u>: propose a methodology for the homogeneity Nirs control of processes and finished blends
- Comparison of raw or pretreated sample spectra because a spectrum can be considered as physical or chemical fingerprint of product: homogeneity assessment between samples by comparing spectra
 - Necessary to define a similarity criterion: distance metric
 - Normalized Mahalanobis distance between each productspectrum and the average product-spectrum in the multidimensional space of PCA scores

Altadis Spectral Global Index for quality control

Mahalanobis Distance in PC Space

Distance between each spectrum i and the mean spectrum μ of the distribution of a set of spectra in the multidimensional space:

 $MD^2 = (Ai - \mu)' C - 1 (Ai - \mu)$

 Calculation of MD done on PC scores of all product spectra

(assuming normal distribution of data in the training set)

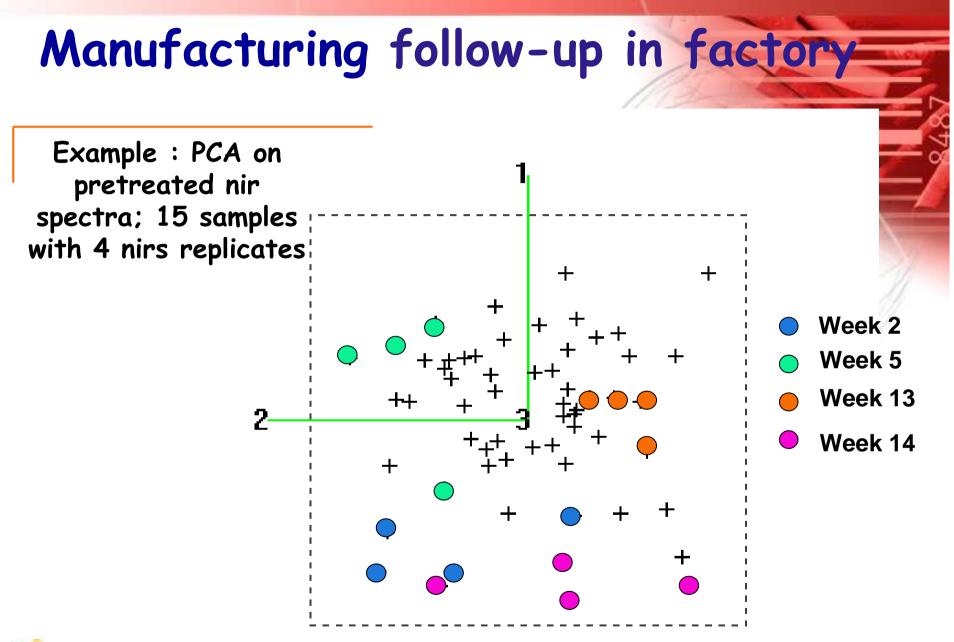
 MD is a measure of the sample dispersion in a distribution: to sort out products according to their MD to mean spectrum and to detect outlier samples

Example of manufacturing follow-up

- In order to decide if the differences between manufactured samples are significant or not:
 - necessary to define threshold limits of Mahalanobis distances calculated in the multidimensional space in order to detect outliers
- Control chart method to check quality of manufactured products and to detect outlier samples: to set up the mean chart \$\$ calculation on a learning set of samples:
 - central line (CTR) mean value (=1)
 - calculation upper control limit (CTR + 3s \sqrt{n}) and upper warning limit (CTR + 2s \sqrt{n})

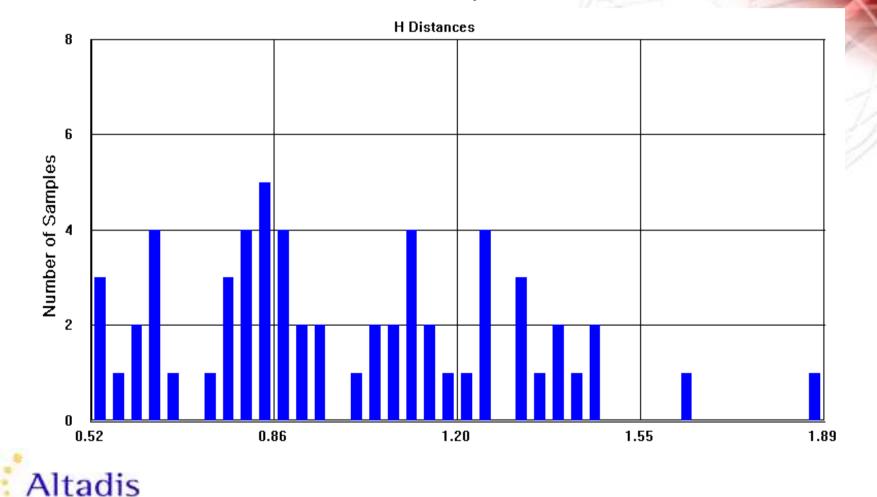
Example of manufacturing follow-up

- Example of one type of manufactured product blend in a factory: 15 pickings during 2005 productions
- → Protocol:
 - Cut tobacco sample scanned by NIRS in four replicates
 - Calculation of Mahalanobis Distance of each picking to average spectrum from library set previously defined by PCA
 - Infrared range (1100 2500 nm)
 - Raw spectra (physical properties)
 - Pretreated spectra : Std Normal Variate Detrend and 1st derivative (chemical properties)



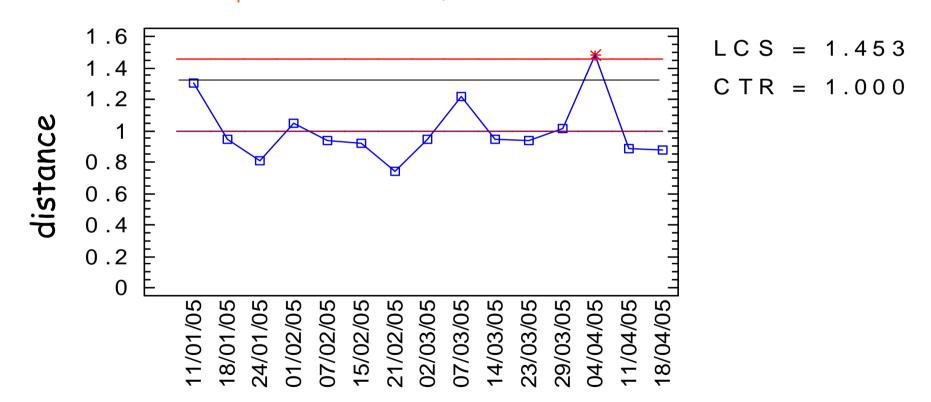
Manufacturing follow-up in factory

Histogram of individual spectral distances from the mean of the library file (pretreated spectra)



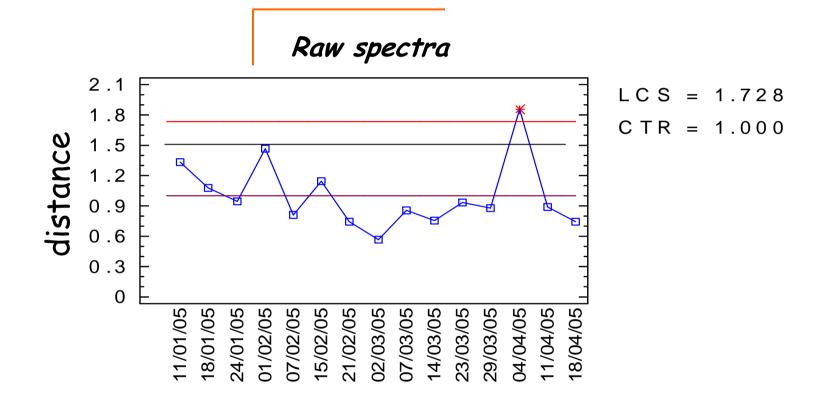
Manufacturing follow-up in factory: mean control chart of distances

Pretreated spectra



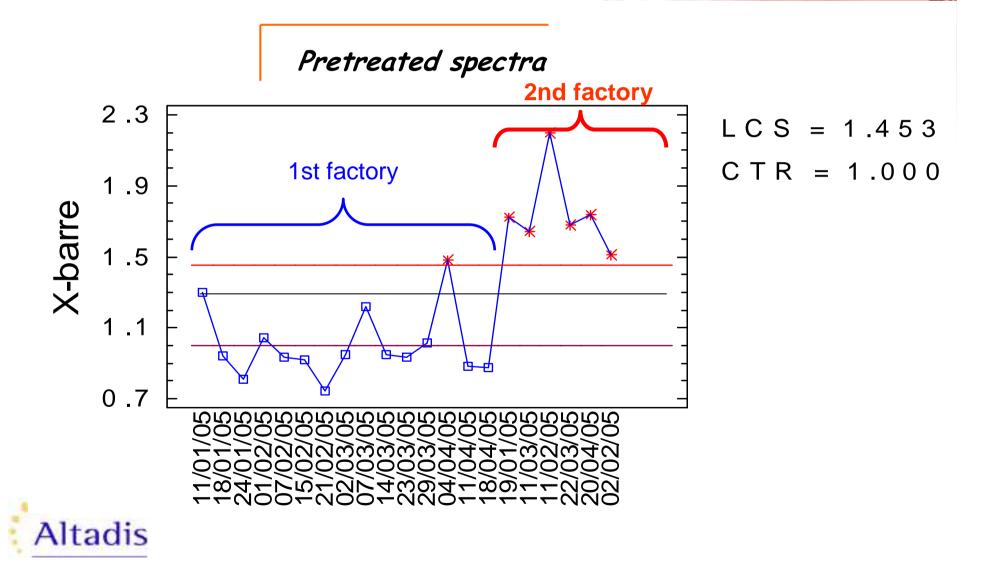
Assessment of homogeneity due to chemical composition

Manufacturing follow-up in factory: mean control chart of distances



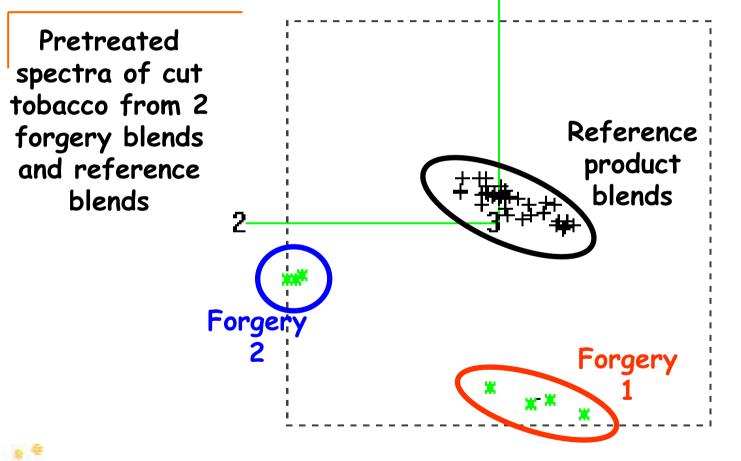
Assessment of homogeneity due to granulometry

Comparison of two blends from two factories

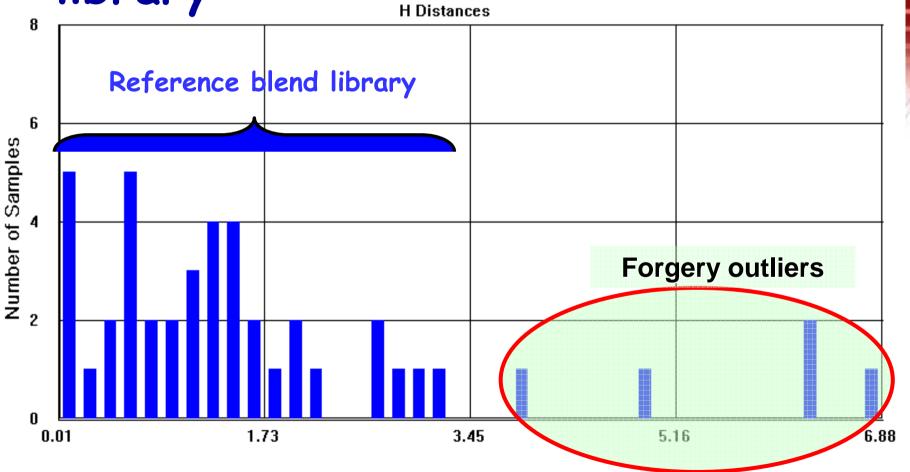


Use of NIRS to detect (easily) forgeries

Score plots on the two first principal components space



Histogram of distances from the mean of the reference library



Quantitative Analysis NIRS diffuse reflectance is highly related to the most of tobacco constituents:

- 23 chemical compounds vs 36 have a correlation of prediction higher than 0.8 and a relative prediction error lower than 10%

Best multivariate calibrations involve:

- signal transformation : scatter and curvature corrections (MSC, SNV; detrending),
- derivative signal: 1st or 2nd
- modified partial least squares regression
- \rightarrow Models can be applied both on nir and visible + nir segments

Conclusion

- Quantitative Analysis NIR reflectance spectrometry can be used to *predict* simultaneously chemical compounds contents, rapidly and with a suitable accuracy in a diverse group of tobacco deliveries
 - . but « predict » is not « determine »
 - . today NIRS is not a reference validated analytical method
 - . NIRS is proposed as a « screening » tool

- NIRS has the potential to be used as an effective screening tool on the basis of spectral information, to classify finished products combined with appropriate supervised pattern recognition method:
 - Linear discriminant method is the most appropriated to classify blends from spectral data with high prediction rate (95%) particularly LDA/PCs
 - DPLS algorithm is the most convenient to use

But the use of non supervised techniques (clustering...) is not <u>suitable</u> for NIRS data to classify tobacco blends !

- Control by NIRS is suitable to check the quality and the homogeneity of manufactured product blends with easy decision rules (control charts)
- Application of signal pretreatments to distinguish heterogeneity due to particle size or to chemical composition
- Limits of the technique: no detection of trace contaminants therefore only heterogeneity of tobacco blends due to the major chemical constituents will be characterised by Near Infrared Spectrometry

