

Assessing Changes In Biomarkers Of Effect In Smokers Who Switch To A Closed System Electronic Cigarette

Liz Mason | Kunming, China | 26th October 2018

CONTENT

1. Background

Biomarkers of exposure and effect Study Aim

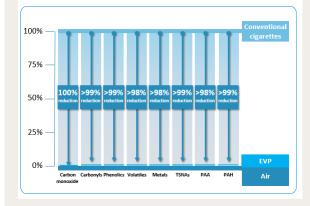
2. 5-day Study

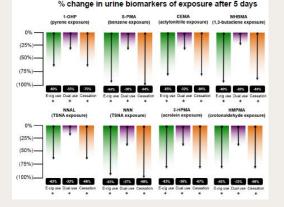
Study design Results

3. Two-year study

Study design Results

4. Summary

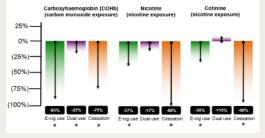

Study Conclusions


VAPOUR PRODUCTS HAVE BEEN SHOWN TO REDUCE BIOMARKERS OF EXPOSURE

Previous studies have demonstrated that when a smoker switches to a vapour product, they are exposed to significantly lower levels of carcinogens and toxicants in the aerosol...

Reduced formation of toxicants in blu™ e-cigarette aerosol vs. conventional cigarette smoke

Background

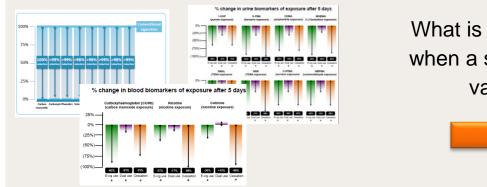


Two year study

% change in blood biomarkers of exposure after 5 days

IMPERIAL BRANDS

SCIENCE


Conclusions

"Chemical Composition of myblu" Pod-System E-Cigarette Aerosols: A Quantitative Comparison with Conventional Cigarette Smoke", Poster presentation, 1st Scientific Summit Tobacco Harm Reduction (http://www.fontemscience.com/wp-content/uploads/2018/04-18-aerosol-chemistry-thr-summit-2018-poster_final_pdf); Tayyarah R and Long GA. "Comparison of select analytes in aerosol from e-cigarettes with smoke from conventional cigarettes and with ambient air." Regulatory toxicology and pharmacology 70 3 (2014). O'Connell et al (2016), Reductions in biomarkers of exposure (BoE) to harmful or potentially harmful constituents (HPHCs) following partial or complete substitution of cigarettes with electronic cigarettes and with smokes, DOI: 10.1080/15375615.2016.119822. http://www.fontemscience.com/wp-content/uploads/2017/05/fontem/seearch-lad

5-day Study

...and significant reductions in biomarkers of exposure...

Background

What is the biological impact when a smoker switches to a vapour product?

Clinical markers:

- can be defined as a measurable biochemical, physiologic, behavioural, or other alteration in an organism.
- can point to sub-clinical changes which, if left unchecked, may lead to a disease state.

Monitoring changes in clinical markers when a smoker switches to a vapour product may provide us with a better understanding of the harm reduction potential of these products.

Two year study

Conclusions

"Chemical Composition of myblu" Pod-System E-Cligarete Aerosols: A Quantitative Comparison with Conventional Cligarete Smoke", Poster presentation, 1st Scientific Summit Tobacco Harn Reduction (http://www.fontemscience.com/wpc-content/uploads/2018/06/2018-04-18-aerosol: chemistry-the-summit/2018-poster Infla.dg/): Tayward R and Long (A "Comparison of select analytes of low excision (fore cligarete tes with smoke from conventional cligaretes and with ambient at:" Reductions in biomarkers of exposure (BoE) to harmful or potentially harmful constituents (HPHCs) following partial or complete substitution of cigaretes with electronic cigaretes in adult smokers, Toxicolow Mechanisms and Methods. DOI: 10.1080/13976515.20.11916/922

5-day Study

CLINICAL MARKERS CAN BE DETECTED BY TARGETED OR UNTARGETED ANALYSES

Targeted

- Defined and specific number of metabolites
- Chemically and biochemically characterised
- Greater selectivity and sensitivity
- Biased by what we already know

Untargeted

- Unbiased
- 100s to 1000s of metabolites can be measured
- May see unexpected changes
- Data processing of untargeted analysis can be challenging

5-day Study

Two year study

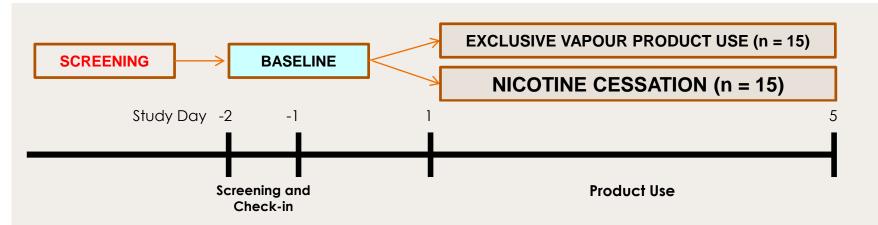
tudy Cor

Background

6|

• AIM: To evaluate changes in clinical markers when healthy smokers switch from conventional cigarettes to a typical closed system electronic cigarette.

Study	Device	Time points compared	Analytical method		
5 day confined clinical study	Blu Tobacco flavour, 2.4% nicotine	BL vs 5 day	 Targeted analysis of potential clinical markers* 		
Two year 'real- life' ambulatory study	Puritane Tobacco or menthol flavour, 1.6% nicotine	BL vs 24 month	 Targeted analysis of potential clinical markers* Non-biased untargeted metabolomics approach to find potential clinical markers 		


*147 potential clinical markers from Myriad RBM's CardioMAP, ImmunoMAP, and InflammationMAP biomarker panels

Two year study

Conclusions

5-day Study

5 DAY CLINICAL STUDY UNDER CONFINED CONDITIONS – STUDY DESIGN

Two year study

- Compared smokers who switched to a closed system e-cigarettes (blu) against those who quit conventional cigarettes unassisted after 5 days
- Blood samples taken at baseline and Day 5; these underwent targeted biomarker analysis

5-day Study

Background

SCIENCE

IMPERIAL BRANDS

Conclusions

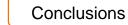
7|

NONE OF THE TARGETED BIOMARKERS SHOWED SIGNIFICANT CHANGES IN THE ACUTE STUDY

- When comparing the cessation group vs. exclusive vapour product group, between group analysis did not highlight any significant changes in the 147 clinical markers measured in this study following a 5-day product switch.
 - The changes between the groups were small compared to the general donor-to-donor variability.

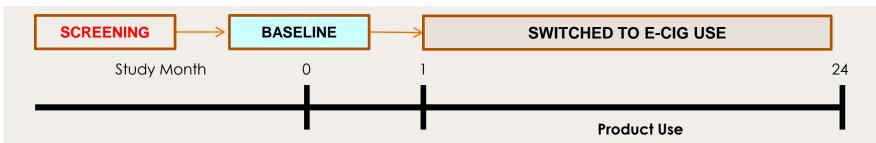
 After correcting for donor-to-donor variability, ICAM1 showed a nonsignificant decreased for e-cigarette users compared from the nicotine cessation group but this wasn't statistically significant

NONE OF THE TARGETED BIOMARKERS SHOWED SIGNIFICANT CHANGES IN THE ACUTE STUDY


 As part of this study, we previously reported* that although significant reductions in biomarkers of exposure were observed, only small but not statistically significant improvements in cardiovascular and pulmonary function were seen after 5 days

Is 5 days enough time to see changes in clinical markers?

*D'Ruiz et al (2017) Reg Tox & Pharm, 87;36-53

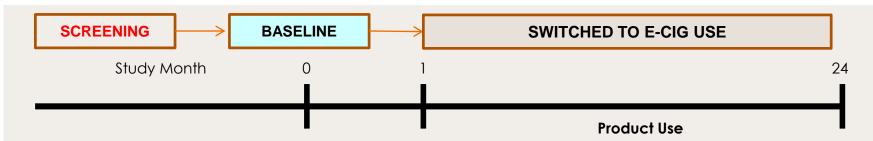

5-day Study

Two year study

TWO YEAR 'REAL-LIFE' AMBULATORY STUDY – STUDY DESIGN

- 209 subjects enrolled in the study
- Two flavour choices: tobacco or menthol (subjects were allowed to change flavour over the course of the study).
- The nicotine concentration of the product was 1.6%.
- Ambulatory study design; blood samples taken and protocol compliance checked at regular intervals

Two year study

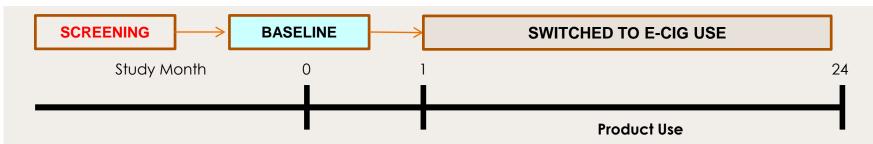

Conclusions

puritane

TWO YEAR 'REAL-LIFE' AMBULATORY STUDY – STUDY DESIGN

puritane

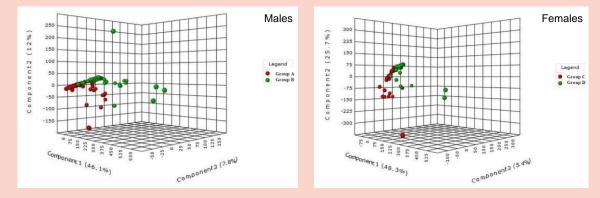
- Reported primary outcomes from this clinical trial after 24 months:
 - Significant decreases in biomarkers of exposure
 - Small decreases in lung function were observed but were not clinically relevant
 - Other parameters such as heart rate, blood pressure and body weight stayed stable
 - White blood cell, HDL and LDL, and haemoglobin levels also remained stable.


Walele et al (2018) Evaluation of the safety profile of an electronic vapour product used for two years by smokers in a real-life setting. Regulatory Toxicology and Pharmacology 92 (2018) 226–238.

TWO YEAR 'REAL-LIFE' AMBULATORY STUDY – STUDY DESIGN

puritane

- 70/209 completed the two year trial with 80% compliance (43 males, 27 females)
- Baseline and 24 month samples were analysed:
 - Specific and targeted analysis of potential clinical markers, and
 - Non-biased untargeted metabolomics approach



UNTARGETED ANALYSIS SUGGESTS SEVERAL BIOCHEMICAL PATHWAYS MAY BE AFFECTED BY VAPOUR PRODUCT USE

Untargeted

No significant changes in the 147 measured clinical markers Moderate separation between baseline and 24 month samples by PCA

Significant alteration in metabolites involved in:

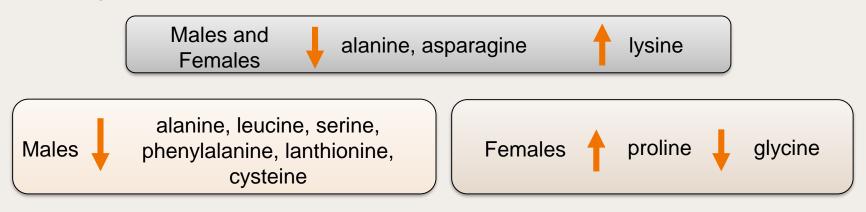
- Amino acid metabolism
- Sertonin/tryptophan metabolism
- Arachidonic acid metabolism

Background

5-day Study

Two year study

Conclusions


IMPERIAL BRANDS

SCIENCE

IMPLICATED BIOCHEMICAL PATHWAYS AMINO ACID METABOLISM

 Several amino acids showed a significant alterations following a two year switch from smoking to a Vapour Product

• Similar changes in amino acid metabolism were observed in a previous study when looking at changes in untargeted biomarkers in smokers who quit nicotine unassisted.

Goettel et al, (2017) Metabolomic fingerprinting in various body fluids of a diet-controlled clinical smoking cessation study using a validated GC-TOF-MS metabolomics platform. 16(10):3491-3503.

IMPLICATED BIOCHEMICAL PATHWAYS SEROTONIN/TRYPTOPHAN METABOLISM

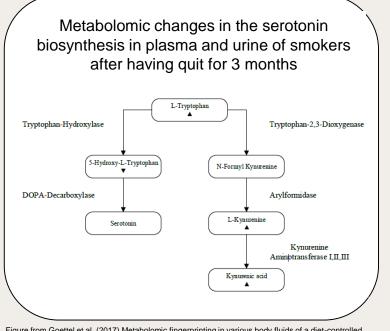


Figure from Goettel et al, (2017) Metabolomic fingerprinting in various body fluids of a diet-controlled clinical smoking cessation study using a validated GC-TOF-MS metabolomics platform. 16(10):3491-3503.

Background

5-day Study

In this study:

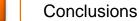
- Females showed significant decreases in serotonin after 24 months Vapour Product use (p<0.001).
- Males and females showed a significant increase in 5-hydroxyindoleacetic acid at 24 months (p<0.001).
- Indicates a shift towards serotonin in smokers and away from serotonin in vapers, in agreement with the results from the smoking cessation study.

Conclusions

Two year study

IMPLICATED BIOCHEMICAL PATHWAYS ARACHIDONIC ACID METABOLISM

- Arachidonic acid is a precursor of several eicosanoid species
 - Eicosanoids are well-established clinical markers indicating oxidative stress and inflammation
- Arachidonic acid significantly increased after 24 months in smokers who switched to vaping
- These findings are in agreement with the results from the smoking cessation study, showing increased levels of arachidonic acid after 3 months of smoking cessation



Arachidonic acid hairpin

Hanna and Hafez (2018) J Adv Res. 2018 May; 11: 23-32.

Two year study

OVERALL CONCLUSIONS

- Minimal changes in targeted clinical markers were observed in the acute or longer-term study
- Untargeted clinical markers were identified with small but statistically significant changes upon switching from a tobacco cigarette to a Vapour Product after 24 months
- These biomarkers belonged to similar biochemical pathways that have been implicated during a smoking cessation study
- Further long-term studies with stricter compliance thresholds may demonstrate more substantial effects of product switching

Xavier Cahours Grant O'Connell Tanvir Walele Josie Williams Ana-Maria Cravo Simon Craige Carl D'Ruiz

www.imperialbrandsscience.com

Supplementary Information

TARGETED BIOMARKERS CUSTOM MAP USING MYRIAD RBM CARDIOMAP, IMMUNOMAP, AND INFLAMMATIONMAP BIOMARKER PANELS

Cardio	Adiponectin	Adiponectin		Alpha-1-Antitrypsin	AAT	Immuno	Angiopoletin-2	ANG-2
Cardio	Apolipoprotein A-I	Apo A-I		Alpha-2-Macroglobulin	A2Macro	Immuno	AXL Receptor Tyrosine Kinase	AXL
Cardio	Apolipoprotein A-II	Apo A-II		Beta-2-Microglobulin	B2M	Immuno	B Lymphocyte Chemoattractant	BLC
Cardio	Apolipoprotein B	Apo B		Brain-Derived Neurotrophic Factor	BDNF	Immuno	CD40 Ligand	CD40-L
Cardio	Apolipoprotein C-I	Apo C-I		C-Reactive Protein	CRP	Immuno	Epithelial-Derived Neutrophil-Activating Protein 78	ENA-78
Cardio	Apolipoprotein C-III	Apo C-III		Complement C3	C3	Immuno	Eotaxin-3	Eotaxin-3
Cardio	Apolipoprotein D	Apo D	Inflammation		Eotaxin-1	Immuno	Erythropoietin	EPO
Cardio	Apolipoprotein E	Apo E	Inflammation		Factor VII	Immuno	E-Selectin	E-Selectin
Cardio	Apolipoprotein H	Apo H	Inflammation	Ferritin	FRTN	Immuno	FASLG Receptor	FAS
Cardio	N-terminal prohormone of brain natriuretic peptide	NT proBNP	Inflammation	Fibrinogen	Fibrinogen	Immuno	Monokine Induced by Gamma Interferon	MIG
Cardio	C-Reactive Protein	CRP	Inflammation	Granulocyte-Macrophage Colony-Stimulating Factor	GM-CSF	Immuno	Granulocyte Colony-Stimulating Factor	G-CSF
Cardio	CD40 Ligand	CD40-L	Inflammation	Haptoglobin	Haptoglobin	Immuno	Chemokine CC-4	HCC-4
Cardio	Chromogranin-A	CaA	Inflammation	Intercellular Adhesion Molecule 1	ICAM-1	Immuno	Hepatocyte Growth Factor	HGF
Cardio	Clusterin	CĽU	Inflammation	Interferon gamma	IFN-gamma	Immuno	Immunoalobulin E	IgE
Cardio	Cvstatin-C	Cystatin-C		Interleukin-10	IL-10	Immuno	Interleukin-13	IL-13
Cardio	EN-RAGE	EN-RAGE		Interleukin-12 Subunit p40	IL-12p40	Immuno	Interleukin-16	IL-16
Cardio	E-Selectin	E-Selectin		Interleukin-12 Subunit p70	L-12p70	Immuno	Interleukin-6 receptor	IL-6r
Cardio	Factor VII	Factor VII		Interleukin-12 Subunit pro	IL-15	Immuno	Interferon gamma Induced Protein 10	IP-10
Cardio		FABP, heart			IL-17		Monocyte Chemotactic Protein 2	MCP-2
	Fatty Acid-Binding Protein, heart			Interleukin-17		Immuno		
Cardio	Ferritin	FRTN	Inflammation		IL-18	Immuno	Monocyte Chemotactic Protein 4	MCP-4
Cardio	Fetuin-A	Fetuin-A		Interleukin-1 alpha	IL-1 alpha	Immuno	Macrophage-Derived Chemokine	MDC
Cardio	Fibrinogen	Fibrinogen		Interleukin-1 beta	IL-1 beta	Immuno	Macrophage Migration Inhibitory Factor	MIF
Cardio	Granulocyte Colony-Stimulating Factor	G-CSF		Interleukin-1 receptor antagonist	IL-1ra	Immuno	Macrophage Inflammatory Protein-3 alpha	MIP-3 alpha
Cardio	Granulocyte-Macrophage Colony-Stimulating Factor	GM-CSF	Inflammation		IL-2	Immuno	Matrix Metalloproteinase-1	MMP-1
Cardio	Haptoglobin	Haptoglobin	Inflammation		IL-23	Immuno	Matrix Metalloproteinase-10	MMP-10
Cardio	Intercellular Adhesion Molecule 1	ICAM-1	Inflammation	Interleukin-3	IL-3	Immuno	Matrix Metalloproteinase-7	MMP-7
Cardio	Interferon gamma	IFN-gamma	Inflammation	Interleukin-4	IL-4	Immuno	Matrix Metalloproteinase-9, total	MMP-9, total
Cardio	Immunoglobulin M	IgM	Inflammation	Interleukin-5	IL-5	Immuno	Myeloid Progenitor Inhibitory Factor 1	MPIF-1
Cardio	Interleukin-10	IL-10	Inflammation	Interleukin-6	IL-6	Immuno	Myeloperoxidase	MPO
Cardio	Interleukin-18	IL-18	Inflammation	Interleukin-7	IL-7	Immuno	Thrombospondin-1	Thrombospondin-1
Cardio	Interleukin-1 alpha	IL-1 alpha	Inflammation	Interleukin-8	II -8	Immuno	TNF-Related Apoptosis-Inducing Ligand Receptor 3	TRAIL-R3
Cardio	Interleukin-1 beta	IL-1 beta		Monocyte Chemotactic Protein 1	MCP-1	Immuno	Interferon alpha	IFN-alpha
Cardio	Interleukin-6	IL-6		Macrophage Inflammatory Protein-1 alpha	MIP-1 alpha	Immuno	Interleukin-22	IL-22
Cardio	Interleukin-6 receptor	II -6r		Macrophage Inflammatory Protein-1 beta	MIP-1 beta	Immuno	Stromal cell-derived factor-1	SDF-1
Cardio	Interleukin-8	IL-8		Matrix Metalloproteinase-3	MMP-3	Immuno	Macrophage inflammatory protein 3 beta	MIP-3 beta
Cardio	Insulin	Insulin		Matrix Metalloproteinase-9	MMP-9	Immuno	B cell-activating factor	BAFF
Cardio	Interferon gamma Induced Protein 10	IP-10		T-Cell-Specific Protein RANTES	RANTES	Immuno	Interferon-inducible T-cell alpha chemoattractant	ITAC
Cardio		Leptin		Stem Cell Factor	SCF	Immuno	6Ckine	6Ckine
	Leptin	Leptin Lp(a)			TIMP-1			TARC
Cardio	Apolipoprotein(a)	LOX-1		Tissue Inhibitor of Metalloproteinases 1		Immuno	Thymus and activation-regulated chemokine	APRIL
Cardio	Lectin-Like Oxidized LDL Receptor 1			Tumor necrosis factor receptor 2	TNFR2	Immuno	Tumor necrosis factor ligand superfamily member 13	
Cardio	Monocyte Chemotactic Protein 1	MCP-1		Tumor Necrosis Factor alpha	TNF-alpha	Immuno	Dickkopf-related protein 1	DKK-1
Cardio	Macrophage Inflammatory Protein-1 alpha	MIP-1 alpha		Tumor Necrosis Factor beta	TNF-beta	Immuno	Interleukin-31	IL-31
Cardio	Macrophage Inflammatory Protein-1 beta	MIP-1 beta		Vascular Endothelial Growth Factor	VEGF	Immuno	Tumor necrosis factor ligand superfamily member 12	Tweak
Cardio	Matrix Metalloproteinase-1	MMP-1		Vascular Cell Adhesion Molecule-1	VCAM-1	Cardio	P-Selectin	P-Selectin
Cardio	Matrix Metalloproteinase-10	MMP-10		Vitamin D-Binding Protein	VDBP	Cardio	Neuropilin-1	Neuropilin-1
Cardio	Matrix Metalloproteinase-3	MMP-3	Inflammation	von Willebrand Factor	WF	Cardio	Neutrophil Activating Peptide 2	NAP-2
Cardio	Matrix Metalloproteinase-7	MMP-7	Cardio	Serum Amyloid A Protein	SAA	Cardio	Pigment Epithelium Derived Factor	PEDF
Cardio	Matrix Metalloproteinase-9	MMP-9	Cardio	Serum Amyloid P-Component	SAP	Cardio	Leucine-rich alpha-2-glycoprotein	LRG1
Cardio	Matrix Metalloproteinase-9, total	MMP-9, total	Cardio	Sex Hormone-Binding Globulin	SHBG	Cardio	Thrombin-Activatable Fibrinolysis	TAFI
Cardio	Mveloperoxidase	MPO	Cardio	Receptor for advanced glycosylation end products	RAGE	Cardio	Antithrombin-III	AT-III
Cardio	Myoglobin	Myoglobin	Cardio	Thrombomodulin	TM	Cardio	Ficolin-3	Ficolin-3
Cardio	Plasminogen Activator Inhibitor 1	PAI-1	Cardio	Thyroxine-Binding Globulin	TBG			
Cardio	Vitamin K-Dependent Protein S	VKDPS	Cardio	Tissue Inhibitor of Metalloproteinases 1	TIMP-1			
Cardio	Pulmonary and Activation-Regulated Chemokine	PARC	Cardio	Tumor necrosis factor receptor 2	TNFR2			
Cardio	T-Cell-Specific Protein RANTES	RANTES	Cardio	Tumor Necrosis Factor alpha	TNF-alpha			
Cardio		INANI ED	Cardio	Vascular Endothelial Growth Factor	VEGF			
			Cardio	Vascular Cell Adhesion Molecule-1	VEGF VCAM-1			
			Cardio	von Willebrand Factor	W F			
			Cardio	von willebrand Factor	VVVF			