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• Electronic cigarette (e-cigarette) aerosol is considered by a

number of public health bodies to provide reduced

exposure to toxicants and carcinogens compared to

conventional cigarette smoke, as it delivers nicotine and

flavours without burning tobacco.

• While recent studies show that e-cigarette aerosol is

chemically simple when compared to cigarette smoke

[1,2,3], comprehensive analytical assessments of many

widely available products are limited.

• In this study, two commercially available myblu™ e-liquids

(1.6% nicotine, tobacco flavour; 1.6% nicotine, menthol

flavour) in a myblu™ pod-system e-cigarette [Figure 1]

were analysed and compared to published data for

cigarette smoke [1].

• A total of 55 chemical emissions were characterised. The

myblu™ products were analysed for the four principal e-

liquid ingredients (nicotine, propylene glycol, glycerol and

water) as well as 51 further constituents of public health

interest (carbonyls, phenolics, volatile organic compounds

[VOCs], metals, tobacco-specific nitrosamines [TSNAs],

polyaromatic amines [PAAs], and polycyclic aromatic

hydrocarbons [PAHs]) [1].

• The additional constituents include those on the FDA

Harmful or Potentially Harmful Constituents (HPHCs) list of

chemicals in cigarette smoke it considers cause or could

cause harm to smokers [4].

• The e-cigarettes were puffed in two separate 50-puff blocks using the CORESTA Recommended Method CRM81 (puffing regime:

55mL/3sec/30sec; square wave) [5]. Five replicates were measured for each e-liquid type. All analyses were conducted by Enthalpy

Analytical LLC, Durham, North Carolina, USA. The methods used by the analysis laboratory are summarized in Table 1.

Figure 1. myblu™ pod-system. 

Device: battery capacity, 350 mAh; fast 

charging, 20 min; aluminium frame. 

Pod: polypropylene plastic; 1.5 mL; 

gold plate connectors; organic cotton 

wick; coil resistance, 1.3 Ω. 

E-liquid compositions: tobacco flavour, 

PG 64% (w/w), VG 31% (w/w), nicotine 

1.6% (w/w), flavouring 3.4% (w/w); 

menthol flavour, PG 39% (w/w), VG 

55% (w/w), nicotine 1.6% (w/w), 

flavouring 4.4% (w/w). 

• The average aerosol collected mass for each e-liquid tested was approximately 10 mg/puff. The myblu™ 1.6% nicotine

tobacco flavour aerosol delivered on average 6091 µg/puff propylene glycol, 3387 µg/puff glycerol and 686 µg/puff water;

the myblu™ 1.6% nicotine menthol flavour aerosol delivered on average 3187 µg/puff propylene glycol, 5396 µg/puff

glycerol and 499 µg/puff water. See e-liquid compositions in Figure 1.

• The nicotine yield for the tobacco flavour variant was 150 µg/puff and for the menthol flavour variant was 125 µg/puff;

correspondingly, this was 33% and 44% lower than the 226 µg/puff nicotine yield published for the cigarette [1].

• Of the 51 toxicants analysed, eight were observed at quantifiable levels, including formaldehyde, acetaldehyde and acrolein

(>99% reduction vs. conventional cigarette); manganese and selenium (average 82% reduction vs. cigarette); and NNN,

NAT and NNK (>99% reduction vs. conventional cigarette). See Table 2. Analyte class data summarised in Figure 2.

• The total analyte yield was <1 μg/puff of toxicants tested for the myblu™ flavours (range 0.96-0.97 μg/puff), which is 99%

less than the 381 μg/puff quantified and published for cigarette smoke [1].

Table 2. Analytical characterisation of myblu™ e-cigarette aerosols and comparison with conventional cigarette smoke (µg/puff).

Figure 2. Average reductions in formation of toxicants by analyte class per puff for myblu™ 1.6% nicotine tobacco flavour 

and 1.6% nicotine menthol flavour e-cigarette aerosols compared to levels in conventional cigarette smoke.

• The aim of this study was to determine the composition of e-cigarette aerosols with respect to the

principal e-liquid ingredients and a range of toxicants (including HPHCs) for which cigarette smoke is

routinely tested and data have been published [1]. Here we report a comprehensive aerosol chemistry

study for two commercially available myblu™ flavours in a myblu™ pod-system e-cigarette device.

• Testing of the myblu™ aerosols indicate low or no detectable levels of the toxicants tested. Overall

the e-cigarettes yielded <1 μg/puff of the toxicants tested compared to the reported cigarette yield of

381 μg/puff. Of the 51 toxicants tested, eight were detected in the e-cigarette aerosols but at

substantially lower levels (see Table 2) than reported in cigarette smoke [1].

• These data are consistent with other studies that have found no quantifiable levels of tested toxicants,

or extremely low levels of measurable constituents relative to cigarette smoke [1,2 6,7].

• Findings from several recent clinical studies indicate that smokers who have switched to e-cigarettes

have significantly lower exposure to carcinogens and toxicants found in cigarette smoke, with

reductions largely indistinguishable from complete smoking cessation or use of licensed nicotine

replacement products [8,9,10].

• The results obtained in the aforementioned studies and in the present work demonstrate that high

quality e-cigarettes and e-liquids offer the potential to substantially reduce exposure to cigarette

carcinogens and toxicants in smokers who use such products as alternatives to cigarettes.

• The findings of the present study with the myblu™ products are highly informative. Future research

studies planned include preclinical in vitro studies, clinical biomarker studies, and population studies

to generate a body of evidence to assess the harm reduction potential of myblu™ products compared

to conventional cigarettes.
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Method Compounds Method of 

Capture

Analysis Method Instrument Method Reference 

Code, Accredited
Analysis of E-Cigarette Aerosol Nicotine, propylene glycol, glycerol, water Pad Pads are extracted with propanol GC FID (for nicotine, 

propylene glycol & 

glycerol) / TCD (for water)

ENT185, 

Accredited

Analysis of Carbonyls in E-

Cigarette Aerosols

Carbonyls: Formaldehyde, Acetaldehyde, Acrolein, Propionaldehyde, 

Crotonaldehyde, Butyraldehyde

Impinger The carbonyls are trapped in a chilled 

acidified solution of DNPH and 

neutralized with pyridine

HPLC UV ENT305,

Accredited

Phenolic Compounds in 

Mainstream Cigarette Smoke by 

HPLC with Fluorescence 

Detection 

Phenolics: Hydroquinone, Resorcinol, Catechol, Phenol, m,p-Cresol, 

o-Cresol

Pad The pads are extracted with a mixture 

of 1% acetic acid and 2.5% methanol

HPLC FLD AM-027,

Accredited for mainstream 

smoke

Selected Volatiles in Mainstream 

Smoke by GC-MS

Volatiles: Styrene Pad / Impinger Pads are extracted with the methanol 

from the impinger 

GC-MS AM-193,

Accredited for mainstream 

smoke

Analysis of Volatile Organic 

Compounds in Cigarette Smoke 

and E-Cigarette

Aerosol by GC/MS

Volatiles: 1,3-Butadiene, Isoprene, Acrylonitrile, Benzene, Toluene Impinger Volatiles are trapped in chilled 

methanol

GC-MS ENT208, 

Accredited

Selected Metals in E-Cigarette 

Aerosol By ICP-MS

Metals: Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Lead, 

Manganese, Mercury, Nickel, Selenium, Tin

Pad Pads are extracted in a 17% nitric acid 

solution

ICP-MS AM-235, 

Accredited

GC/MS Analysis of Nitrosamines 

in Cigarette Smoke, E-cigarette 

Aerosol, and E-Cigarette

Liquid

TSNAs: NNN, NAT, NAB, NNK Pad Pads are extracted with water and 

solvent exchanged into methylene 

chloride

GC/MS/MS ENT211, 

Accredited 

Selected Primary Aromatic 

Amines (PAAS) in E-Cigarette 

Aerosol by GC-MS 

PAAs: 1-Aminonaphthalene, 2-Aminonaphthalene, 3-Aminobiphenyl, 

4-Aminobiphenyl

Pad Pads are extracted in hexane while 

water is used to remove organic 

interference. The extract is then 

concentrated and derivatized with

pentafluoropropionic acid anhydride

GC-MS (NCI) AM-221, 

Accredited 

Polynuclear Aromatic 

Hydrocarbons (PAHS) in 

Mainstream and Sidestream 

Smoke 

PAHs: Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, 

Phenanthrene, Anthracene, Fluoranthene, Pyrene, Chrysene, 

Benzo(b)fluoranthene, B(a)P, Benzo(k)fluoranthene, Indeno[1, 2, 3-

cd]pyrene, Benzo(g,h,i)perylene 

Pad / Impinger Pads are extracted in methanol. The 

extract is cleaned by passing it through 

a C18 cartridge after which the PAHs 

are eluted using toluene

GC-MS (EI) AM-044, 

Accredited for mainstream 

smoke

Table 1. Summary of analytical methods used for characterisation of myblu™ e-cigarette aerosol emissions.

Analyte Class Compound Marlboro Gold Box

(µg/puff)

(Data [1])

myblu™ 1.6% Tobacco 

Flavour 

(Average µg/puff)

% Reduction vs. 

Conventional 

Cigarette 

(Where >LOQ)

myblu™ 1.6% Menthol 

Flavour

(Average µg/puff)

% Reduction vs. 

Conventional 

Cigarette

(Where >LOQ)

Carbonyls Formaldehyde 7.12 0.0142 >99% 0.0282 >99%

Acetaldehyde 156 0.0132 >99% <LOD (0.004) -

Acrolein 16.4 <LOD (0.003) - 0.0038 >99%

Propionaldehyde 11.2 <LOD (0.004) - <LOD (0.004) -

Crotonaldehyde 4.42 <LOD (0.003) - <LOD (0.003) -

Butyraldehyde 6.36 <LOD (0.003) - <LOD (0.003) -

Total 201.5 <0.040 >99% <0.046 >99%

Phenolics Hydroquinone 9.3 <LOD (0.21) - <LOD (0.21) -

Resorcinol 0.53 <LOD (0.004) - <LOD (0.004) -

Catechol 9.42 <LOD (0.08) - <LOD (0.08) -

Phenol 1.53 <LOD (0.056) - <LOD (0.056) -

m,p-Cresol 1.2 <LOD (0.048) - <LOD (0.048) -

o-Cresol 0.49 <LOD (0.024) - <LOD (0.024) -

Total 22.47 <0.422 >98% <0.422 >98%

Volatiles 1,3-Butadiene 8.88 <LOD (0.03) - <LOD (0.03) -

Isoprene 114 <LOD (0.32) - <LOD (0.32) -

Acrylonitrile 3.04 <LOD (0.03) - <LOD (0.03) -

Benzene 10.3 <LOD (0.04) - <LOD (0.04) -

Toluene 18.5 <LOD (0.04) - <LOD (0.04) -

Styrene 2.23 <LOD (0.03) - <LOD (0.03) -

Total 156.95 <0.491 >99% <0.491 >99%

Metals Arsenic <LOQ (0.001) <LOD (0.0005) - <LOD (0.0005) -

Beryllium <LOQ (0.001) <LOD (0.00003) - <LOD (0.00003) -

Cadmium 0.013 <LOD (0.0001) - <LOD (0.0001) -

Chromium <LOQ (0.001) <LOD (0.001) - <LOD (0.001) -

Cobalt <LOQ (0.001) <LOD (0.00003) - <LOD (0.00003) -

Lead 0.0038 <LOD (0.0001) - <LOD (0.0001) -

Manganese 0.0021 <0.00047* >78%* 0.00032* >85%*

Mercury 0.00008 <LOQ (0.0002) - <LOQ (0.0002) -

Nickel <LOQ (0.001) <LOQ (0.001) - <LOQ (0.001) -

Selenium <LOQ (0.001) <0.00024* >76%* 0.00012* >88%*

Tin <LOQ (0.001) <LOD (0.0005) - <LOD (0.0005) -

Total <0.026 <0.004 >84% <0.004 >84%

TSNAs NNN 0.0195 0.000009 >99% 0.000006 >99%

NAT 0.0235 <LOD (0.000003) - <LOD (0.000003) -

NAB 0.00267 0.000002 >99% 0.000002 >99%

NNK 0.0147 0.000004 >99% 0.000004 >99%

Total 0.06 <0.00002 >99% <0.00002 >99%

PAAs 1-Aminonaphthalene 0.00122 <LOD (0.0000007) - <LOD (0.0000007) -

2-Aminonaphthalene 0.00072 <LOD (0.0000007) - <LOD (0.0000007) -

3-Aminobiphenyl 0.00042 <LOD (0.0000004) - <LOD (0.0000004) -

4-Aminobiphenyl 0.00028 <LOD (0.0000003) - <LOD (0.0000003) -

Total 0.003 <0.000002 >99% <0.000002 >99%

PAHs Naphthalene 0.12 <LOQ (0.005) - <LOQ (0.005) -

Acenaphthylene 0.00877 <LOQ (0.0002) - <LOQ (0.0002) -

Acenaphthene 0.0204 <LOQ (0.0002) - <LOQ (0.0002) -

Fluorene 0.0275 <LOQ (0.0006) - <LOQ (0.0006) -

Phenanthrene 0.0229 <LOQ (0.0008) - <LOQ (0.0008) -

Anthracene 0.0106 <LOQ (0.0002) - <LOQ (0.0002) -

Fluoranthene 0.0116 <LOQ (0.0002) - <LOQ (0.0002) -

Pyrene 0.0111 <LOQ (0.0002) - <LOQ (0.0002) -

Chrysene 0.0039 <LOQ (0.00004) - <LOQ (0.00004) -

Benzo(b)fluoranthene 0.00115 <LOD (0.00001) - <LOD (0.00001) -

Benzo(k)fluoranthene 0.00055 <LOD (0.00001) - <LOD (0.00001) -

B(a)P 0.00133 <LOD (0.00001) - <LOQ (0.00004) -

Indeno[1, 2, 3-cd]pyrene 0.00062 <LOD (0.00001) - <LOD (0.00001) -

Benzo(g,h,i)perylene 0.00024 <LOD (0.00001) - <LOD (0.00001) -

Total 0.24 <0.007 >97% <0.008 >96%

Total Toxicant Yield 

(µg/puff)

<381.25 <0.96 <0.97

* indicates that values are <LOD, <LOQ and >LOQ across replicates; where below the LOD or LOQ, the LOD or LOQ value is used in calculation of the average.


