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Abstract
The extraction of tobacco, obtained either by Likens Nickerson or supercritical fluid extraction, generates 
samples that contain a high number of different compounds. The characterization and the comparison of these 
tobacco extracts require the use of a powerful analytical technique. Thanks to its high peak capacity enabling the 
separation of several hundreds of compounds in a single run, comprehensive two-dimensional gas 
chromatography (GCxGC) is now considered as the most efficient technique for the analysis of complex volatile 
mixtures.
However, taking into account all the information obtained in the whole 2D chromatogram for comparison 
purposes is far from trivial. A simple transposition of traditional data processing based on individual peak 
integration would be tedious and time consuming, given the large number of peaks often observed. Thus, the 
data processing is often reduced to a rather subjective visual examination of color plots to determine which spots 
are similar and which are different. This is the reason why a strategy based on chemometrics is proposed for the 
global comparison of the GCxGC chromatograms. 
The idea is to perform a data processing based on picture comparison. Each point of the color plot is taken as a 
response and multivariate analysis tools are used to determine to what extent these responses differ or not from a 
sample to another. Nevertheless, this strategy failed to give satisfactory results because the comparison is blurred 
by variability of retention times, especially along the second chromatographic dimension. To handle this 
problem, a preliminary alignment of the chromatograms is carried out. The effectiveness of a time alignment 
strategy, Dynamic Time Warping, is demonstrated. In addition, discriminant components were obtained from a 
comparison of pictures based on point to point correlation, and identified with Mass Spectrometry data.
The proposed approach was successfully applied to the comparison of the volatile fraction of tobacco extracts to 
discriminate various types of tobaccos.

INTRODUCTION
The properties of tobaccos are influenced by genetics, agricultural processes, soil type and nutrients, climatic 
conditions, plant disease, stalk position, harvesting and curing procedures. A change in any of these factors can 
markedly alter the chemical composition of leaves and thus affect smoking quality. The total number of chemical 
constituents in tobacco leaves exceeds 4000 [1]. Understanding the relationship between the chemical 
composition and the flavour and the aroma of tobacco requires an analysis of these components. Then, the results 
may be used to classify and select different types of tobacco, for comparison purposes, for quality control, to 
discover new compounds or to characterize the chemical classes of compounds. The coupling of a rapid 
extraction technique and comprehensive GCxGC was shown to allow a fast analysis of representative tobacco 
samples (Burley, Virginia and Oriental) [2]. The comprehensive GCxGC is a two dimensional technique (2D) 
that is suitable for to the analysis of complex volatile samples including thousands of compounds. Nevertheless 
such analyses generate a large amount of data that can not be processed as usually done for 1D technique. To our 
knowledge there is no general strategy described in the literature to perform a global comparison of GCxGC 
chromatograms. In this paper, it will be shown how signal processing techniques combined with multivariate and 
correlation analyses allow to select the responses that differ from a sample to another. Then, these responses will 
be related to corresponding chemical compounds thanks to the coupling between GCxGC and Mass 
Spectrometry data.

EXPERIMENTAL
GCxGC apparatus

A trace GCxGC system from Thermo-Electron Corporation (Courtaboeuf, France) equipped with a Merlin 
Microseal injector (Merlin Instrument Company, CA, US) was used. It was fitted out with a double jets carbon 
dioxide cryogenic modulator, and a split/splitless injector. To avoid discrepancies related to a poor trapping of 
the compounds in the modulator, the two jets were placed closer to the column than in the original configuration. 
The set of columns presenting the best compromise both in terms of separation and ageing was as follows. The 
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first column was an apolar capillary column VF-1 ms, Varian (Les Ulis, France), 15 m x 0.25mm, 1.0�m. This 
column was connected to a DB 1701 1.5m x 0.1m, 0.1�m from Agilent Technologies (Waldbronn, Germany). 
Connections between columns were made using deactivated presstight connectors from Restek (Evry, France). 
The flow rate of the carrier gas was 1mL/min and the injector was set at 240�C. In order to have a 
preconcentration of the solutes at the beginning of the column by recondensation, a cold trapping was applied to 
the splitless injection. The temperature program used started at 40�C for 40 s, then an increase at 60�C/min was 
applied up tol 70�C, and after a hold for of 3min, 2.5�/min were applied up to 240�C. The injected volume was 
2�L. The injection was carried out in splitless mode with a surge of 400kPa during 40s. A typical modulation 
period of 5s was used. Detection was carried out with the quadripolar mass spectrometer DSQI (Thermo-
Electron). The transfer line was set at 250�C. Classical electron ionization (70eV) was used; only the mass range 
was limited to 40-240 m/z so that the acquisition frequency (around 30 Hz) was compatible with GCxGC data. 
Excalibur software was used for data acquisition; then, data were imported into Hyperchrom S/W software for 
the visualization of 2D chromatograms. Hyperchrom S/W offers the possibility to export the 2D chromatogram 
as a text file. The matrix obtained could then be read into Matlab (R2008b, The MathWorks, Natick, MA, USA) 
for data processing.

Gases

Liquid CO2 was of industrial grade and purchased from Air Liquide (Le Plessis Robinson, France). Pure gases, 
i.e. helium (99.9995%) and CO2 (99.999%, for supercritical fluid extraction) were purchased from Messer 
(Asni�res, France).

Tobacco extracts

Three types of tobacco were considered: Burley, Virginia and Oriental. For each type, several different samples 
were available, corresponding to different batches or different origins. One extract was available for each 
sample.
FVN data set

A first set of tobacco extracts was provided by the Imperial Tobacco group. They were obtained by the “Likens 
Nickerson” [3] process directly from tobacco leaves cut into small pieces. At the end of the process, extracts 
were in hexane.
SFE data set
Another set of extracts was generated at the LECA by supercritical fluid extraction. Extractions were performed 
with a Suprex SFE Prepmaster GA apparatus (Pittsburgh, PA, US). The experimental protocol consisted in 
putting tobacco samples into a 5 mL SFE cell. Then extractions were performed in static mode for 5 min, and in 
dynamic mode for 30 min with a CO2 density of 0.4 at a temperature of 150�C [4]. Extracted compounds were 
collected after the pressure was released by bubbling in 3 successive vials, each filled with 3 mL of hexane: ethyl 
acetate (50:50 v/v) mixture. The injected sample corresponded to the first 3 mL, as it was checked that no 
compound was present in the following vials. Two extracts were available per sample. Figure 1 and Table 1
summarize the sources of variability of the used data sets. In order to limit chromatographic variability, all 
samples were analyzed in the shortest possible period of time.

Figure 1. Sources of variability in the two data sets.
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Tobacco Type Burley Virginia Oriental

Extraction Type FVN SFE FVN SFE FVN SFE

Number of different samples 4 4 4 4 4 12

Number of extractions 1 2 1 2-3 1 2

Number of Injections 2-3 2-5 2-3 2-3 2-3 2-3
Table 1. Sources of variability and their modalities.

BASICS ON GC x GC
Comprehensive GCxGC has been largely published [2 and 5-10]. The separation is operated on two GC 
columns, one being apolar, the other polar. Thanks to a modulator, each peak eluting from the first column is cut 
into several parts. Then, each cut is re-injected in the second column, allowing a fast separation. It results in very 
sharp peaks (100-200 ms width). Figure 2 explains how raw acquisition data are converted into 2D 
chromatograms: two overlapping peaks x and y emerging from the first column are resolved in GCxGC. Raw 
data of a GCxGC run is a large series of high speed second dimension chromatograms, which are usually stacked 
side by side to form a two-dimensional chromatogram with one dimension representing the retention time on the 
first column and the other, the retention time on the second column. Visualization is usually done by means of 
color or contour plot to indicate the signal intensity.

Figure 2. Visualisation of a GCxGC chromatogram.

DATA PROCESSING
We have considered that interpreting and comparing GCxGC chromatograms can be similar to analysing and 
comparing images. Indeed, each point of the chromatogram is a pixel of an image and is characterized by three 
numbers: two time coordinates (retention times along the first and second chromatographic dimensions) and a 
value for signal intensity. Thus, if each pixel is considered as a response, multivariate analysis can be used to 
compare samples in the space defined by these responses. In this paper, Principal Component Analysis (PCA) 
[11] has been used to check the relevance of the different processing steps applied to the GCxGC data: the more 
the different types of tobacco are separated on a PCA score plot, the more the studied processing of the data is 
relevant. We have already demonstrated the interest of combining time re-alignment algorithms and multivariate 
analysis [12]. In this paper, data pre-processing, peak alignment, and discriminant pixels selection have been 
studied and optimized thanks to PCA score plots. Matlab and C routines were developed for these processing 
steps.

Data pre-processing
To compensate for the inherent variability inherent to GC injection, a pre-processing of the data was required.
Background correction
Correcting the baseline of a unidimensional signal is a classic pre-treatment before analyzing chromatograms. In 
GCxGC unidimensional signals turn into images, a baseline correction amounts to a background correction. Our 
method of background subtraction was inspired from a DNA microarray preprocessing algorithm [13].
First, the image is divided into N rectangular zones (typically N = 60 or N = 80). Then the pixels of each zone i 
are ranked and the lowest 2% are chosen as the background of the studied zone i. Nevertheless a simple union of 
the backgrounds found would not be a satisfactory estimate of the whole image background. That is the reason 
why a smoothing adjustment is performed. For this purpose, we compute distances between each pixel of the 
image and the N zone centers. A weighted sum is then calculated based on the reciprocal of a constant plus the 
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square of the distances to all the zone centers. The smooth backgrounds obtained in this manner were subtracted 
to the chromatograms.
Normalization
A simple normalization on the mean intensity of the chromatograms has been operated so that the mean of each 
chromatogram equals 1.

Dynamic Time Warping
Because of the short separation time along the second chromatographic dimension (about 5s), the analysis along 
the latter dimension is very sensitive to experimental conditions (pressure, temperature…). Consequently peak 
misalignment may occur along this separation (see Figure 3). A comparison of chromatograms where peaks have 
different positions on the second dimension would be meaningless. Thus, to align the peaks, Dynamic Time 
Warping (DTW) was used. This method has been developed to address speech recognition issues [14], and 
Wang & Isenhour first proposed in 1987 [15] to apply it to chromatographic signals.

Figure 3. Unaligned signals (both come from Burley samples).
DTW algorithm
Let us represent the signals by R (Reference) and by S (Signal to align on R). These signals are sequences of 
length n:

R  r1, r2 ,,rn
S  s1,s2 ,,sn

To align these signals, we construct an n-by-n matrix D containing the Euclidean distances between the points ri

and sj:

D(i, j)  (ri  s j )
2

A warping path W is a set of matrix elements that defines a mapping between R and S. The kth element of W is 
defined as wk = (i,j)k. We have hence W = w1, w2, …, wK, with n ≤ K ≤ 2n – 1. The cost of the warping W 
between R and S is defined as the cumulated distance:

J (R, S)  D(wk )
k1

K


An optimal warping Wopt minimizes this cost, i.e.:

Wopt  arg min
W

J (R, S) 

Furthermore, the optimal path must satisfy several conditions:
– boundary conditions: w1 =(1,1) and wK = (n,n),
– path continuity: given wk = (i,j), then wk-1=(i’,j’) with i – i’ ≤ 1 and j – j’ ≤ 1,
– path monotonicity : given wk = (i,j), then wk-1=(i’,j’) with i – i’ ≥ 0 andj – j’ ≥ 0.
This path can be found using dynamic programming. The dynamic programming matrix  is computed 
recursively according to:

 (i, j)  min  (i, j 1)  D(i, j), (i, j)  2  D(i, j), (i 1, j)  D(i, j) 
Once the entire matrix is filled, the optimal warping path is calculated in reverse order from wK=(n,n) to w1 (see 
Figure 4). A simple synchronization algorithm then realigns the signal S on the reference R (see Figure 5).
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Figure 4. Dynamic programming matrix  and warping path.

Figure 5. Result of the alignment.
Additional constraints
In order to improve the performance of the algorithm, additional constraints have been applied to the 
computation of the warping path. Indeed, two major pitfalls may occur during the construction of the path.
First, the path may follow a staircase trajectory, presenting long vertical and horizontal thresholds; this is quite 
inconvenient because these unrealistic thresholds will be present in the aligned signal. In order to solve this 
problem, a direct constraint on the slope of the warping path has been applied, by simply preventing the 
succession of two horizontal or two vertical segments.
Second, the path sometimes moves too far away from the matrix diagonal. As proposed by Keogh [16], a 
windowing on the dynamic programming matrix prevents the path from deviating. It merely consists in 
confining the path in a pipe centered on the matrix diagonal.
Alignment strategy
All the chromatograms have been realigned with the algorithm presented above. The windowing was performed 
with a rectangular, 40 pixels wide window. This algorithm was first developed with Matlab, and later 
implemented in C so as to save computation time (aligning a chromatogram with Matlab takes 1 min, whereas it 
only takes 3 s in C).
The realignment is operated on each column of each chromatogram. It is done in a supervised fashion inside 
each tobacco family: for each tobacco type, a reference is chosen on which all the others samples are realigned. 
We checked that the choice of the reference chromatogram has no influence on the results.

Selection of discriminant pixels
In order to find the pixels (and thus the compounds) that are characteristic of a tobacco type, we developed a 
method that compute correlation maps between pixel values and tobacco type.
Pixel to pixel correlation
This method is applied to a whole data set at one time. The algorithm scans all the chromatograms at a time pixel 
by pixel. Let us assume that one wants to find the pixels that are characteristic of Burley tobacco (see Figure 6).
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Figure 6. Illustration of the pixel to pixel correlation method.
For each pixel the algorithm computes the correlation between the pixel values vector and the coding vector 
(these codes belonging to the Burley family). Three cases may occur:
– the correlation is close to 1: the pixel corresponds to a compound over expressed in Burley samples;
– the correlation is close to -1: the pixel corresponds to a compound under expressed in Burley samples;
– the correlation is close to 0 : the pixel has no discriminant power.
Once all the chromatograms are scanned, a correlation map is obtained. A list of discriminant pixels is obtained 
by selecting a certain amount of pixels with close to unit correlation (typically 500 pixels).
Retrieving retention times
Due to the realignment, after the previous operation, the coordinates of the pixels can not be directly converted 
into the retention times of the corresponding compounds. Indeed, because of the DTW the coordinates of the 
pixels no longer correspond to the retention times. The warping breaks the linear relation between pixels 
coordinates and retention times. Thus, a reverse warping has to be applied to get back to the original coordinates 
of a pixel (its coordinates before DTW). This operation is simply made by reversing the warping path of the 
considered signal calculated during the alignment.
Then, the discriminant pixels have to be short-listed: several pixels may be found on a unique peak. A simple 
research of local maximum around discriminant pixels allows to find the maximum of the considered peak, and 
to define a chromatographic peak zone.

RESULTS AND DISCUSSION
The effect and the relevance of each step of the data processing is now evaluated according to the quality of the 
separation of the tobacco types on PCA score plots.

Effect of the data pre-processing
The background correction and the normalization reduced the differences of intensity between the 
chromatograms. Consequently, after these operations the dataset has become more homogenous. The results of 
PCA applied to the pre-processed data are presented on Figure 7. The different tobacco types are quite 
overlapping (particularly for FVN data), which confirms the need for a peak alignment process.

Figure 7. PCA score plot after data pre-processing.
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Effect of the peak alignment
Figure 8 shows that the alignment enhances the discrimination between the different kinds of tobaccos. So, the 
three types are now visibly well separated.
However, if this analysis reveals the differences between the tobacco types, it does not provide information 
about what are these differences. This is the reason why the algorithm that selects the discriminant pixels has 
been developed.

Figure 8. PCA score plots after the peak alignment.

Selecting discriminant pixels
The correlation maps described above have been computed for each data set and for each tobacco type. Then, for 
each map, the 500 pixels whose correlation is closest to 1 have been selected. After a reverse time warping, we 
can represent them on the original chromatograms (see Figure 9 and Figure 10).

Figure 9. FVN Burley 500 discriminant pixels.

Figure 10. SFE Virginia 500 discriminant pixels.
Then, the selected pixels may be used as descriptors for the PCA: instead of taking the 128000 pixels of the 
chromatograms as descriptors, only the union of the 1500 (3 kinds of tobaccos x 500 pixels for each kind)
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selected pixels is kept (see Figure 11). The separation between the tobacco types is obvious: The pixels selection 
has enhanced the differences between the chromatograms of each type. It proves the relevance of our pixel 
selection algorithm.

Figure 11. PCA after discriminant pixel selection.
Peak assignment
Once the discriminant pixels have been found, they have been short listed into peak areas. A peak selection 
algorithm has been applied so as to provide a list of discriminant peaks. Then, this list of peaks can be linked to 
Mass Spectrometry data in order to identify the discriminant compounds. An example of such a peak attribution 
is shown in Figure 12.

Figure 12. Discriminant peak attribution thanks to MS data for a SFE Burley sample.

CONCLUSION
This study demonstrates the relevance of a chemometric strategy to interpret and compare GCxGC 
chromatograms. PCA has allowed us to check the quality and the relevance of our different data processing 
steps. The performance of the data pre-processing, of the peak re-alignment, and of the discriminant pixel 
selection, have been studied on the yardstick of this multivariate analysis. It revealed that the peak re-alignment 
and the pixel selection enhance the differences between Burley, Virginia and Oriental tobacco samples. 
Moreover, the identification of discriminant pixels has been linked to discriminant compounds thanks to Mass 
Spectrometry data. This opens wide outlooks in (i) the development of an automatic processing strategy to 
interpret GCxGC chromatograms; (ii) the discrimination of origin and grades inside a tobacco type; (iii) the 
study of the impact of the variability of extraction process on the effectiveness of the discrimination.
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