6th Bergerac Tobacco Scientific Meeting, September 2005

Contribution of Near Infrared Spectrometry (NIRS) to tobacco breeding

Institut du Tabac

Introduction : Principle

Spectra acquisition

log 1/R

 λ : 400-2500 nm

variétés	famille	généa	Bloc ligne	N° éch	ALCA	CEN	Nt	MS
BAMM	S3	25-1-3	0101	02-23494	2,42	23,09	3,44	93,48
BAMM	S3	66-2-2	0102	02-23495	2,56	25,52	3,10	93,32
ITB 1000	temoin		0103	02-23496	3,08	20,54	3,64	93,20
BCCM	S3	14-2-2	0104	02-23497	0,70	25,60	3,07	92,89
BCCM	S3	14-2-3	0105	02-23498	1,83	23,28	4,08	94,41
BCCM	S3	20-1-1	0106	02-23499	1,48	23,40	4,14	93,61
BCCM	S3	20-1-6	0107	02-23500	1,57	22,47	4,35	93,68
ITB 1105	temoin		0108	02-23501	2,86	22,54	3,57	93,25
BG1C	S3	14-1-1	0109	02-23502	3,66	21,71	3,74	92,94
BG1C	S3	14-1-2	0110	02-23503	3,23	22,86	3,67	93,01
BG1C	S3	24-1-2	0111	02-23504	2,31	23,00	3,46	93,85
BG1C	S3	24-1-4	0112	02-23505	2.25	22.07	3.69	93.39

Chemical analyses

Data matrix

Setting up of the predictive models

♣ Near Infrared Reflectance Spectrometry (NIRS) used for the characterization of tobaccos issued from the Bergerac Tobacco Institute (ITB) breeding programs.

- Chemical components routine-predicted since 1999 :
 - Total alkaloids (A),
 - Ashes (Ash),
 - Total Nitrogen (N),
 - Total Reducing Sugars (TRS).

The spectrophotometer

FOSS NIRSystem 6500 : from 400 to 2500 nm (1050 measure points, 2 nm steps)

WinISI II spectral acquisition and calibration software

Spectral and chemical data

- Tobaccos cultivated in ITB from 1995 to 2000
- Lines and varieties from breeding programs
- 3 tobacco types :

1255	Flue-cured
507	Dark air-cured
659	Burley
2421	Samples

- spectral variability
- important chemical component level ranges
- year effects, varieties, stalk positions ... integrated
- Achieved on the 3 tobacco types separately

Setting up of the predictive models

Modified PLS predictive models (*Modified Partial Least Squares*) Y = b0 + b1x1 + b2x2 +...+ bkxk

Setting up of the predictive models

	Files	Number of samples			
FC	Calibration	720			
	Validation	535			
DK	Calibration	375			
	Validation	132			
ВУ	Calibration	515			
	Validation	144			

Classical chemical analyses performed on a sample set from each new year field trials (2001 ... 2004) :

- Confirmation of the performance of the models.
- No enrichment with new samples because of :
- satisfying predictions,
- spectra integrated in the initial spectral population,
- component levels integrated in the range of values observed in the calibration files.

Application of the models on validation files

Application of the models on validation files

© Burley tobacco

Conclusion

 Potential of the NIRS technology for the prediction,

with an error close to the laboratory error,

of

total alkaloids, ashes, total nitrogen and total reducing sugar levels

in tobacco.

Setting up of a discriminant equation

Spectral profiles different according to tobacco types

Setting up of a discriminant equation

Other results : chemical content

	Nicotine	NN/A	NH ₃	ASN	AT	CIT	EP	Cl	MAL	PP	PRO
FC				×	×		×		×	×	×
DK			×		×	×	×		×		
ВУ	×	×	×	×	×	×	×	×			

Other results : cigarette

Successfull calibrations :

- tar (mg / cigarette)

 tobacco smoke condensate (mg / cigarette)

tobacco weight (mg /cigarette)

 mutagenic activity (number of revertants / mg tobacco smoke condensate)

Application of the models on validation files

- Stem percent
- Tobacco filling power
- **4** Burning capacity
- \rm Seeds ...

Advantages of the technique (1)

- Fast (2 mn / scan)
- Rapid results from a sample set
- Allows the screening of a large number of samples
- Multiplicity of predictions from one sample scan (spectra can later be used for predictions when new models are developed)

Advantages of the technique (2)

- 4 Simple to perform (sample preparation)
- Non-destructive
- 4 Safe (no extraction)
- Inexpensive

- Possible standardization for calibration transfer

Disadvantages of the technique

- Cost of the NIRSystem
- Calibration step
- Annual enrichment to include maximum variability among samples used for calibration
- Annual controls to be continued
- Unsuccessful results

Conclusion

 Perfectly well-adapted to tobacco breeding in order to improve tobacco leaf quality.

Prospects : Working with fresh or dried leaves

Portable NIRSystem :

- **↓** 7.5 kg
- Wheeled carrier for transport
- Internal batteries
- High intensity contact probe with flexible cable

LabSpec Pro (FONDIS Electronic, Analytical Spectral Devices Inc. (USA))

Prospects : Working with fresh or dried leaves

Thank you for your attention !

