CORESTA CONGRESS 2006 Paris, 15-20 October

Detection of QTLs linked to leaf and smoke properties in *Nicotiana tabacum*

<u>Emilie Julio</u>, Béatrice Denoyes-Rothan, Jean-Louis Verrier and François Dorlhac de Borne

From gene to smoke

Gene expression

Enzymatic reactions

Field practices

Curing

SMOKE Organoleptic quality Undesirable compounds (PAH, TSNA...)

Combustion

Physical properties tissu quality

Molecular markers for tobacco improvement

- Development of markers is recent in tobacco
 - \rightarrow Amphidiploid (2n=48) and large genome (4500 MB)
 - → Low levels of polymorphism
 - → Markers developed for simple traits (resistance to pathogens)
- Smoke is a complex product
 - → Lots of environmental factors from the field up to the smoke
 - → Tobacco quality results from complex traits => Quantitative Trait Loci

The identification of QTLs for these traits will help elucidate their genetic control.

Possibility to modify its expression ?

Characteristics of tobacco plants selected for mapping

	4K78	ITB32	P value
Leaf harvesting time	86.2	111.71	0.0000
Total weight	2.09	2.73	0.0014
Reducing sugars	13.97	19.32	0.0032
Total alkaloid	2.7	1.7	0.0038
Nitrogen	2.72	2.19	0.0078
Nicotine	2.46	1.38	0.0015
B[a]P in smoke	11.2	21.5	0.0008

VD x 72C18

Development of 114 F6 Recombinant inbred lines (RILs)

Obtention of polymorphic markers on ITB32 and 4K78

184 polymorphic markers

- 146 AFLP (Amplified Fragment Length Polymorphism)
- 13 ISSR (Inter Simple Sequence repeat)
- 20 SSAP (Sequence Specific Amplified Polymorphism)
- 3 SCAR (Sequence Characterized Amplified Region)

- Low polymorphism in agreement with previous studies
- Partial map
 - → 75 % of detected markers are mapped
 - → 47 % of mapped markers are on 2 linkage groups
 - → A resistance factor is present on these two linkage groups (PVY^N and black root rot resistances)
- Presence of high degree of polymorphism in interspecific regions already described in tobacco (introgression from *N. debneyi*)
- High distorsion segregation (46%) mainly on three linkage groups
 - → Structural reasons (interspecific introgression)?
 - → Type of cross involved ?

QTLs detection

Variation of chemical and physical traits

Characters	Mean	SD	Range	Transgressive RILs	Heritability
Leaf harvesting time	95.9	9	44	no	0.77
Weight after curing	2.1	0.35	2	yes	0.50
Suckers production	1	1.1	5	yes	0.69
Total alkaloids	2.23	0.47	2.13	yes	0.47
Anatabine	0.2	0.08	0.43	yes	0.72
Tar *	19.97	1.67	8.6	no	0.54
Chlorine *	0.65	0.1	0.56	no	0.07
Citric acid *	0.56	1.23	1.39	yes	0.21
Tobacco weight/cig	900	74.32	411	yes	-
B[a]P	15.66	3.62	18.29	no	-

* NIRS prediction

Correlation between characters

Phenotypic variance explained with Composite Interval Mapping detection

> 30 %				
from 20	up	to	30	%
from 15	up	to	20	%
from 10	up	to	15	%
< 10 %	•			

Character	Variance (%)	LOD
Suckers	33.0	3.6
Leaf harvesting time Stalk 1	30.0	3.2
Suckers	21.5	6.7
Anabasine	27.0	8.1
Proline	18.3	5.6
Polyphenols	16.9	5.7
Polyphenols	12.7	4.4
Anabasine	9.6	3.8

Examples of QTLs detected on linkage groups 1, 3, 4, 9 and 12

To conclude :

- First work on quantitative traits related to agronomical and industrial quality of the tobacco plant
 - → 75 QTLs detected explaining from 8 up to 41.5 % of trait variation
- Major QTLs detected
 - → Anatabine (27 %), anabasine (27,8 %) (TSNA precursors)
 - → Benzo[a]pyrene (19 %) (PAH)
 - → Suckers (33,3 %, 21,5 %, 8,2 %)
 - → Leave harvesting time (30 up to 44 %)
- QTLs detected have to be confirmed
 - → On several years
 - → On different geographical localizations

Outlooks

- Development of new markers to complete the genetic map
 - → Use of ESTs databank (ATC-ITB) to look for microsatellites markers and SNP (Single Nucleotide Polymorphism) markers
 - www.estobacco.info
- Development of a genetic map based on Burley type tobaccos
 - → detection of QTLs linked to Burley specific characters
 - → More characters studied (heavy metals, aromatic amines...)
- Development of a consensus linkage map based on the Flue-cured and on the Burley genetic maps thanks to common markers

Thanks

ARN - Association pour la Recherche sur les Nicotianées

Altadis – Institut du tabac de Bergerac BCM, Expérimentation, Pathologie, Sélection, Bioprocess, Chimie,

Altadis - Centre de Recherche d'Orléans - Les Aubrais

INRA Bordeaux - B. Denoyes Rothan

