Fingerprints of tobacco smoke precursors by comprehensive GCxGC

M. Bouzige, C. Clerté, C. Nos, B. Brégeon, B. Vidal, B. Duméry

Altadis Research Center - France

Introduction

Pyrolysis Spiking Experiments

Smoke Aroma - Toxicity

Heating treatment GCxGC analysis

× Plan

- Tobacco heating treatment
- GCxGC principle & advantages
- Optimisation of GCxGC for heated tobacco samples
- Applications

Sample preparation

Image of the carbohydrates / nitrogenous balance during combustion

Sample analysis - Limitation of GC analysis for profiles comparison

Advantages of comprehensive GCxGC

- * Improved separation power
- * Organized chromatograms

GCxGC system

Trace GCxGC Ultra ThermoElectron

GCxGC system

Trace GCxGC Ultra ThermoElectron

Optimisation of the separation

× Parameters

- Columns phases: apolar/polar vs polar/apolar
- Columns lengths
- Temperature program

× Samples

- Standard solution of model solutes

- Heated Tobacco extracts

furanones furans furaldehydes pyrazines
pyridines
pyrrolidinones
pyrroles

* Objective

- Good distribution of the compounds over the 2D plane
- Separation of the main families of compounds
- Best discrimination between tobacco types

Normal Phase GCxGC

RTX5 $30m \times 0.25mm \times 0.25 \mu m$ RTX1701 $1m \times 0.1 mm \times 0.1 \mu m$ 0.8 mL/min - 2.5°C/min

Reverse Phase GCxGC

Solgelwax $30\text{mx}0.25\text{mmx}0.25\mu\text{m}$ RTX1701 1mx0.1 mmx0.1 μm 0.8 mL/min - $2.5^{\circ}C/\text{min}$

Column Length/ Temperature program

Solgelwax 30mx0.25mmx0.25μm RTX1701 2mx0.1 mmx0.1 μm 0.8 mL/min - 1.5°C/min

Tobacco comparison

1D Profiles ВУ pyrazines FC Furfural hydroxyketones

Tobacco comparison

Comparison of Flue-Cured

Link with smoke compounds

Interactions between tobaccos: By 0 / FC 100

Interactions between tobaccos: By 25 / FC 75

Interactions between tobaccos: By 50 / FC 50

Interactions between tobaccos: By 100 / FC 0

Additives effect

Additives effect

Additives effect

Conclusion

- * Heating of tobaccos
 - Information on carbohydrate / nitrogenous equilibrium during combustion
 - Link with smoke composition

× GCXGC

- Improved performance compared to 1D-GC
- Fingerprint of the prominent families of compounds
- At a glance visualisation of differences between samples
- Easier comparison of heated tobacco extracts

Promising tool for the understanding of the smoke composition