60th TSRC Montréal, Québec Canada

HCN and tobacco precursors.

BREGEON Bernard, Micheline Coupé and Barbara Gonny

Objective:

To develop an approach to evaluate effective contribution of tobacco nitrogen compounds on HCN delivery in mainstream smoke.

Structure:

- #1 Introduction
- #2 Methodology
- #3 Precursors list
- #4 Trial terms and smoking tests controls
- #5 Impact and contribution of precursors
- #6 Modeling
- #7 Conclusions

Methodology:

Spiking of potential precursors at different amounts on US blend prior to cigarette making.
(NTM and tobacco weight = constant).
HCN quantifications with classical method.
Smoking tests with ISO conditions.

Constraints:

- Evaluation of precursors during cigarette smoke generation.
- The quantities added must be adapted according to the potential impact on HCN and solubility of each nitrogen compounds.

Precursors list:

Proteins: Di-peptides: Amino-acids: Albumin and γ Globulin. Ala - Ala and Phenyl Ala - Ala. ASN, ASP, PRO and GLN.

Miscellaneous:Tobacco pigments (Extracted from Air cured tobacco).Urea.

2, 3, 4 or 5 doses depending on availability and cost.

Smoking tests controls:

Smoke parameters report for albumin trial.

> No significant effect of doses on these responses.

Statistical report for control and trial terms:➤ No significant effect of precursors on these responses.

		TPM / cig	Nb of Puff
Control	S.D.	0.55	0.19
Control	Av.	14.51	7.90
Control	CV.%	6.77	2.43
		TPM / cig	Nb of Puff
Trial	S.D.	TPM / cig 1.06	Nb of Puff 0.22
Trial Trial	S.D. Av.	TPM / cig 1.06 14.25	Nb of Puff 0.22 8.78

Enrichment controls:

Example: 5 doses of albumin, estimated by nitrogen gain.

> Accordance between estimated and expected doses.

Protein influence on HCN in MSS

Total HCN vs protein doses in %

HCN amounts in µg /cig

Difference of contribution on HCN formation.

Amino acids impact on HCN:

> No significant incidence of proline and aspartic acid on HCN formation.

Polypeptide influence on HCN:

Example: ALA-ALA

Comparison of precursor contributions :

Calculated gain in HCN for 25 millimoles of precursors per 100 g of tob.

> Confirms the differences of contribution on HCN for proteins or amino acids.

> No significant impact of tobacco pigments and urea on HCN formation.

Precursors evaluation in no-enriched blend:

By using known addition approach, possible estimation of protein amounts. In this blend: Between 10 and 16% of proteins >> Average: 13%. (\sim 1.7 % expressed in Nitrogen).

• Total HCN response of blend: Equivalent to $\sim 11\%$ of peptides or $\sim 20\%$ of amino acids.

Relative contribution of precursors for no-enriched blended cigarette:

US blend / chemicals report	%
ASN	0.63
GLN	1.5
Estimated proteins	13
Total Nitrogen	3.1

HCN

Probable mechanism:

[^^^CO-NH^^^]

>>>

Modeling:

Relation between HCN amounts in MSS and Total Nitrogen in tobacco as is (expressed in % of DM).

105 representative tobacco lots, including dark air cured.

	Slope	Intercept	R ²
Flue Cured	74.79	7.09	0.46
Oriental	72.11	67.76	0.62
Burley	68.51	-124.13	0.51
Dark air cured	81.92	-182.19	0.27

Modeling (contd.):

Protein Nitrogen = Difference of N amounts in coagulated extract with and without pepsin digestion. (Modified Wegner E. approach).

17 tobacco lots, including all tobacco types.

Conclusions:

Spiking approach confirms tobacco peptides or amides compounds contribution on HCN formation in smoke.

> Great implication of proteins or polypeptides on HCN response, compared to amides potential in tobacco.

> Right method for screening of potential precursors but limited for protein estimation.

No general model without protein determination.

> Reliable efficiency of Protein Nitrogen protocol for modeling.