Mechanisms of transfer of ammonia in smoke from ammonium compounds in tobacco

<u>Yves SAINT-JALM</u>, G. DUVAL, T. CONTE and I. BONNICHON Altadis Research Center Fleury-les-Aubrais FRANCE

Survey of the European market (1998)

- 53 leading brands in Europe
 - France (24), Netherlands, Belgium, Germany,
 Italy, Spain, Switzerland, Austria, Greece and
 UK
 - Exclusively Virginia and American blends
 - Full flavor (tar between 10 and 15 mg)
- Survey of different chemical and physical parameters
 - Ammonium in tobacco, Ammonia in smoke

Relationship between Ammonium in Tobacco and Ammonia in smoke

Relationship between Ammonium in Tobacco and Ammonia in smoke

- Linear regression
 - -NH3 = 13.2 + 37.9 NH4
 - NH3 in $\mu g/cig$
 - NH4 in % in dry tobacco

-r = 0.594;

- ANOVA : p <0.01; significant relationship</p>
- Interpretation of results difficult because
 differences in blend and cigarette design

Transfer of Ammonia From Ammonium compounds

- These data seem to illustrate a direct transfer of Ammonia into smoke from Ammonium compounds in tobacco with a very low transfer rate
 - An increase of 0.2 % of Ammonium in blend
 - gives a mean increase of $8 \mu g / cig$ of ammonia
 - from the regression equation
 - with a potential of $130 \ \mu g$ / cig
 - assuming 800 mg of tobacco /cig
 - and a transfer rate of 8 % (equivalent to nicotine)

Experimental design

- Hypotheses
 - Ammonium compounds produce Ammonia under thermal degradation
 - Ammonia reacts with carbonyl compounds produced by the pyrolysis of carbohydrates
 - with a special emphasis on sugars (Glucose, Fructose and Sucrose which degradation occurs at the same temperature range)

Experimental design Response surface type

- American blend
 - Addition of controlled amounts of DAP and Sucrose

		0 %	1 %	2 %
	0 %	S1D1	S1D2	S1D3
Sucrose	2,5 %	S2D1	S2D2	S2D3
	5 %	S3D1	S3D2	S3D3

– King size cigarette

- Constant tobacco weight : 792 mg
- no filter ventilation

Controlled parameters Tobacco rod

- Total alkaloïds
- Ammonium
- Glucose, Fructose, Sucrose
- Phosphate
 - Continuous Flow Analysis

Tobacco - Ammonium

	DAP0		DAP1		DAP2	
	m	th	m	th	m	th
S0	0.30	0.30	0.52	0.53	0.72	0.76
S2.5	0.30	0.29	0.52	0.52	0.71	0.75
S5	0.29	0.29	0.49	0.51	0.71	0.73

% in dry tobacco

Tobacco - Sucrose

	DAP0		DAP1		DAP2	
	m	th	m	th	m	th
S0	0.87	0.87	0.80	0.86	0.63	0.85
S2.5	2.67	3.29	2.53	3.26	2.67	3.22
S5	4.75	5.59	4.73	5.54	4.81	5.49

% in dry tobacco

Tobacco - Glucose

	DAP0		DAP1		DAP2	
	m	th	m	th	m	th
S0	1.78	1.78	1.63	1.76	1.55	1.75
S2.5	1.80	1.74	1.73	1.72	1.77	1.70
S5	2.10	1.70	1.92	1.68	1.86	1.66

% in dry tobacco

Same pattern for Fructose

Tobacco - Alcaloïds

	DAP0		DAP1		DAP2	
	m	th	m	th	m	th
S0	2.17	2.17	2.13	2.15	2.13	2.13
S2.5	2.12	2.12	2.06	2.10	2.05	2.08
S5	2.06	2.07	2.04	2.05	2.01	2.03

% in dry tobacco

Tobacco analysis - Conclusions

- The experimental design was realised as planned
- Sucrose was partially inverted to Glucose and Fructose during the process
- Reaction between sugars and DAP may have occurred at this stage

Transfer of Ammonia Variables

- Smoke
 - Tar, Nicotine
 - ISO methods
 - Pyrazines
 - GC
 - Diacetyl, Methylglyoxal
 - HPLC (derivatization with o plenylendiamine)
 - Ammonia
 - Ion exchange liquid Chromatography

Methodology

- Variables expressed in ppm / NFDPM
- Mathematical model
 - V = a + b x A + c x B + d x AB + e x A² + f x B²
 - where : A is added sucrose in % and B is added DAP in %
- ANOVA
 - To simplify the model (exclude or not the second order terms in the model)
- Calculate the final model and the estimated response surface

 $NH3 = 1572.6 - 80 \times S + 586.6 \times DAP + 36.1 \times S \times DAP$

MeG = 2669.3 + 223 X S - 370.1 x DAP - 29.5 x S x DAP

 $Pyr = 33.5 + 0.78 \times S + 6.2 \times DAP + 0.2 \times S \times DAP$

Transfer of ammonia

- There is a direct transfer of ammonia in smoke from ammonium compounds
- This transfer is partially inhibited when sucrose yields increase
- Ammonia reacts with some carbonyl compounds produced by sugar pyrolysis

Effect on Nicotine transfer Variables

- Nicotine
 - Expressed in % of DTPM
- Nicotine in vapour phase
 - Expressed in % of total Nicotine
 - Denuder tube method
- "Smoke pH"
 - Total smoke
 - Condensate
 - Aqueous solutions

pH - Total smoke

	DAP0	DAP1	DAP2
S0	5,54	5,52	5,64
S2.5	5,51	5,51	5,44
S5	5,46	5,44	5,53

No significant effect

pH - TPM

	DAP0	DAP1	DAP2
S0	6,36	6,27	6,31
S2.5	6,23	6,30	6,24
S5	6,18	6,38	6,26

No significant effect

Nic = $7.415 - 0.196 \times S + 0.208 \times DAP + 0.026 \times S^2$

Vapour Phase Nicotine % of total Nicotine

VPNic = 4.92 - 0.048 x S - 0.296 **DAP** - 0.047 x S x **DAP**

Effect on Nicotine transfer

- No modification of "smoke pH"
 whatever the trapping method used
- Very limited modification of Nicotine concentration in condensate
 - Combustibility effect ?
- No increase of Nicotine in vapour phase
 - a decrease is observed instead

Summary

- The direct transfer of Ammonia in smoke from Ammonium compounds is probably controlled by the ammonium yield and the sugars (and related compounds) yield
- No significant effect on Nicotine transfer in smoke have been observed