

M. Bouzige, B. Vidal, JP. Biesse, C. Jousserand, V. Marchand, B. Dumery

ALTADIS RESEARCH CENTER Fleury les Aubrais, FRANCE

Introduction

- Chemical analyses of special analytes or biological tests on smoke are rather complex and time consuming
- × Aim of this study :
 - Define predictive models based on fast analyses in order to give estimates to the blenders easily
 - Study the link between tobacco properties and special analytes contents or biological activity

Material

- × 105 tobaccos of different types
 - Burley : 28 tobaccos, 9 countries
 - Flue Cured : 37 tobaccos, 8 countries
 - Sun Cured : 13 tobaccos, 5 countries
 - Dark : 27 tobaccos, 8 countries
- Samples are representative of the tobacco market (origin, stalk position, maturity, quality)
- × Production of cigarettes for each tobacco sample
 - All the cigarettes are made with the same NTM
 - The cigarettes have the same draw resistance

Partial Least Square Regression

Link a block of explanatory variables to one or many variables to be explained

Principle : find a subspace which gives at the same time the best description of the individuals according to X values and the best prediction of Y

- Variables can be highly correlated and more numerous than the observations
- × There can be missing values

Specific activity overview

Specific activity (rvts/mg TPM) vs tobacco type

Specific	В	DAC	FC	Oriental
Activity				
Min	2416	2444	652	1032
Max	6438	5792	3141	3802
Mean	4641	4362	1751	2006

Comparison of different models

×	All types of tobaccos Adjustment quality	Cross Validation Robustness		Error of estimation	Error of prediction
	X variables	R2Y	Q2	RMSEE	RMSEP
	NIRS (MPLS)	0.91	0.83	480	430
	NIRS	0.85	0.80	648	503
	Chemical (1)	0.84	0.83	653	555
	N (linear regression)	0.84	0.84	655	675
	Chemical (2)	0.82	0.82	695	588
	Chemical & Smoking	0.79	0.79	746	632
	Physical	0.59	0.56	1058	907

✗ Analytical error of measurement : ~ 400 rvts/mg of NFDPM

Prediction of Specific Activity with NIRS : Calibration Set

Prediction of Specific Activity with NIRS : Validation Set

NIRS is an easy and quick method to forecast the specific activity of a tobacco

Specific Activity : Link with Chemistry

Specific Activity : Link with Chemistry on Burley Tobaccos

Linear regression :

RMSEE = 761 rvts/mg TPM RMSEP = 735 rvts/mg TPM

Coefficients (CR)

With extra chemical indicators, improvement. RMSEE = 454, RMSEP = 571

YVar(AS)

Optimisation of Burley choice according to chemical properties

Antadis

NitrosoNorNicotine in smoke overview

NNN in Smoke content according to tobacco type

Tobacco Type

NNN in smoke (na/cia)	В	DAC	FC	Oriental
Min	52	66	2	2
Ma×	1666	565	189	415
Mean	592	266	41	60

Comparison of different models

- X No model obtained with NIRS : no quick & easy prediction
- Good linear relationship between NNN in tobacco and NNN in smoke

Other influent parameters

- No improvement with physical parameters : physical variables are not significant in the models
- × Addition of extra chemical parameters :

X variables	R2Y	Q2	RMSEE	RMSEP
All tobaccos				
NNNT	0.79	0.79	146	139
NNNT, NOR, C/K	0.90	0.90	101	109
Burley				
NNT	0.89	0.89	143	159
NNNT, K	0.92	0.92	129	211

No significant improvement of the prediction quality NNN in tobacco is the main factor which explains NNN in smoke

Prediction for blends

- × 27 commercial cigarettes, tar between 9 and 12 mg
- ✗ Different NTM combinations (Filter ventilation from 0 to 29 %)
- × Measurement of NNN in the blend and in smoke
- × Same procedure as for As is tobaccos

For a limited range of tar, NNN is the main factor explaining NNN in smoke despite different cigarette NTM combinations

Factors of prediction of NNN in Burley tobaccos

× Comparison of different models of prediction of NNN in Burley tobaccos

× NNN is not directly linked to tobacco blenders expertise

Conclusion & Perspectives

Specific Activity

- NIRS is a quicker method to forecast results of Ames Test (strain TA98 S9 activation) for as is tobaccos
- Chemical models can be implemented with chemical parameters linked to tobacco properties

Keep up the models
Extend them to blends
Define responsible compounds & precursors

NNN in smoke

- No fast prediction of NNN in smoke based on NIRS results
- Transfer seems to be the main factor of explanation of NNN in smoke
 - For as is tobaccos
 - For cigarettes in a limited range of tar
- NNN in tobacco can be predicted from nornicotine content or from other chemical parameters
- NNN is not directly related to tobacco blenders expertise

 Keep up the models
Validate the transfer hypothesis
Put under control factors of formation of NNN in tobacco

