

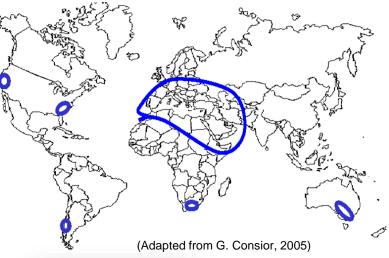
AP14 - RNA-SEQ ANALYSIS OF OROBANCHE RESISTANCE IN TOBACCO: DEVELOPMENT OF MOLECULAR MARKERS FOR BREEDING RECESSIVE RESISTANCE FROM WIKA TOBACCO VARIETY.

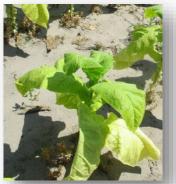
R. ⁽¹⁾; Decorps, C. ⁽¹⁾; Dorlhac de Borne, F. ⁽¹⁾.

(1) Imperial Brands, Leaf research, La Tour, 24100 Bergerac, France(2) Bergerac Seed and Breeding, La Tour, 24100 Bergerac, France

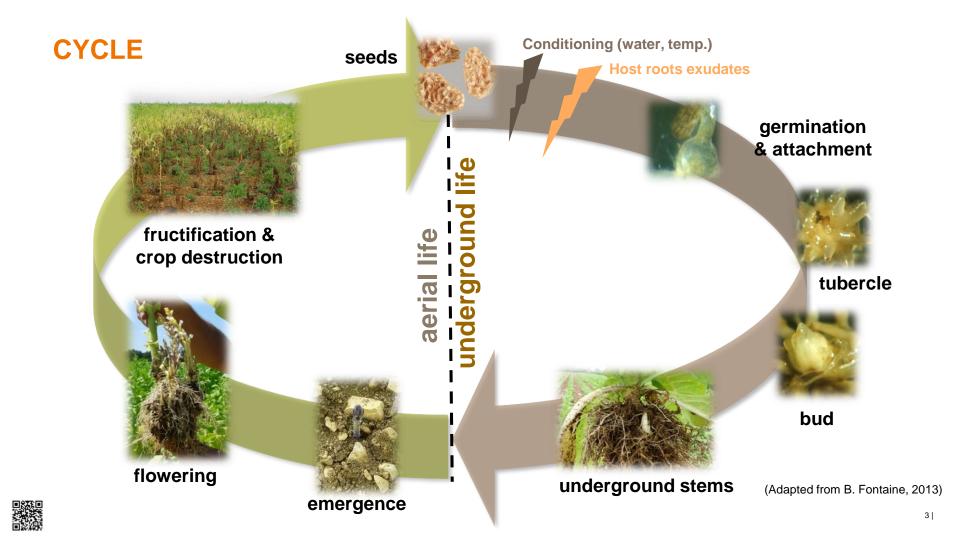
MPERIAL

SCIENCE




BROOMRAPE/OROBANCHE RAMOSA

- Broomrape are dicotyledonous parasitic flowering plants that cause heavy economic losses in many crops worldwide.
- Economically destructive (from 5 to 100%) leading to the interruption of tobacco cultivation in very impacted areas.
 - 2018: south of France, up to 20% and more !
- Broomrape control is challenging:
 - Use of agrochemicals is difficult because of hostparasite connection
 - Prolific seed production, seed longevity...


Need for resistant varieties Assist selection with markers

21

RESISTANCE MECHANISMS

CAN BE QUANTITATIVE, MONOGENIC, RACE SPECIFIC, COMBINED MECHANISMS...

Preventing germination of seeds:

- low germination stimulant production
- exudation of parasitic-seed germination inhibitor

Preventing the penetration of the parasite:

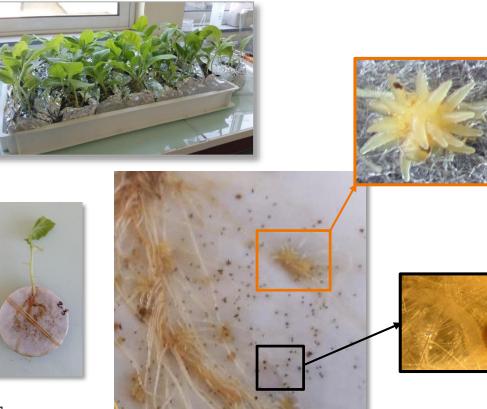
- low haustorium stimulant production
- inhibition of haustorium formation

Postestablishment mechanisms :

- occlusion of vessels with mucilage
- production by the host and delivery into the parasite of toxic metabolites

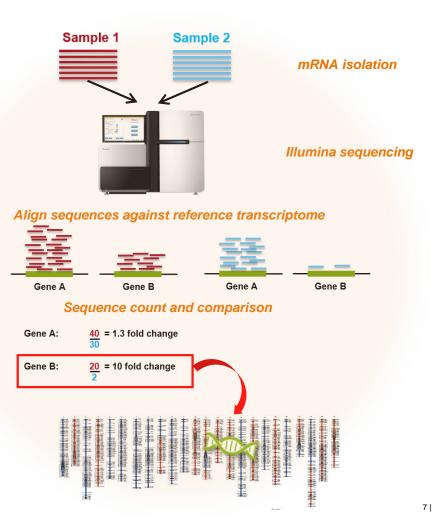
Preventing establishment :

- formation of a physical barrier (deposition of callose , suberin)
- host necrosis at attachment point


GENETIC MATERIAL USED

- Wika shows later/lower stimulation of Orobanche seed germination (IT germplasm collection screening : 68 entries Nicotiana species + various tobacco types, field trials from 2003 to 2006).
- Compared to a susceptible variety, no biological activity from Wika roots exudates have been found (Brault- Hernandez, PhD, 2006).
- This tolerance is recessively inherited (Cailleteau *et al.*, CORESTA 2006)
- Breeding lines were developed by conventionnal breeding from Wika tolerance.

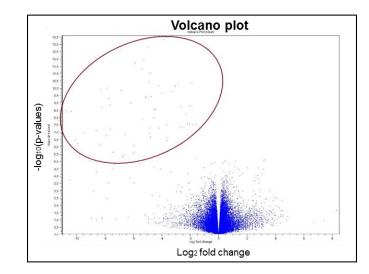
THE PHENOTYPING TOOL

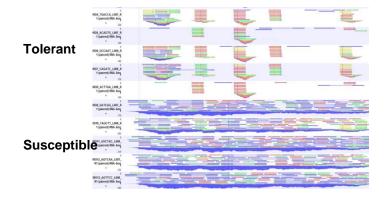

- Plantlets in plastic Petri dishes inoculated with 500-1000 Orobanche seeds.
- Scoring of germination near roots:
 - % of seeds germination
 - Number of seed germinated at star level.
- Warning:
 - Elimination of plantlets with small root system to avoid false negative.
 - Additionnal scoring for plants with 2<% germination<10

STRATEGY

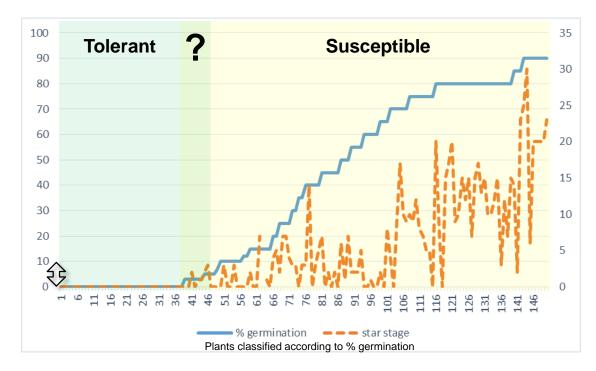
- I. RNA-Seq analysis of BSB breeding lines:
 - R control Wika + 7 resistant lines.
 - S control VD + 5 susceptible lines
- II. Identification of candidate markers.

- III. Validation and mapping on F2 segregating population characterized for tolerance.
- IV. Screening of the Nicotiana collection



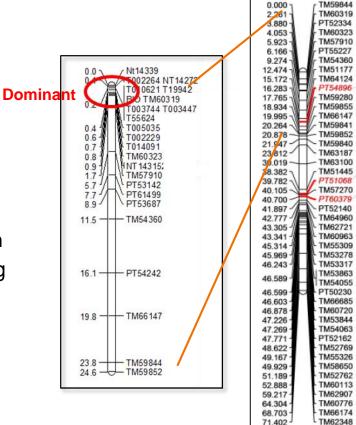

RNA-SEQ RESULTS

- Reference transcriptome : 62395 contigs.
- T-test, tolerant vs susceptible lines
 - More than 90 genes with P-value $< 10^{-6}$.
 - On these 90 genes, 95% are preferentially expressed in susceptible lines.
 - 94% are from *N. tomentosiformis* origin.


Deletion on a chromosome from *N. tomentosiformis* origin ?

TESTING ON TWO F2 SEGREGATING POPULATION BIOLOGICAL TEST RESULTS

	F2-1	F2-2
R parent	Wika	Wika
S parent	V4K	KYR
Number of ind.	83	134
R:S	16:67	35:99
P value (1:3)	0,229	0,765



Recessive resistance confirmed

TESTING ON TWO F2 SEGREGATING POPULATION LINKAGE MAPPING

- Alignement of differentially expressed genes on *N. tabacum* genome (Edwards *et al* 2017): all genes are mapping on the extremity of Nt.14.
- Linkage mapping of some candidates along with SSR markers from Bindler *et al* (2011) and Tong *et al* (2016): confirmation of Nt.14.

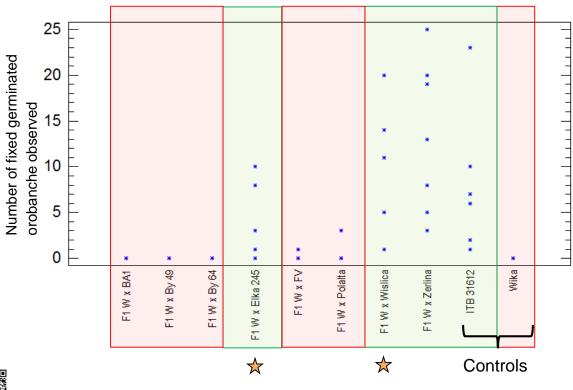
Rk14

SCREENING OF THE COLLECTION DNA AND SSR MARKERS

Designed on DNA (Edwards et al 2017)

Designed on diff. expr. contigs

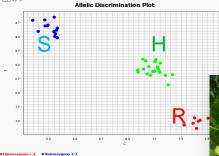
SSR (Bindler et al. 2011+Tong et al. 2016)



Different sizes and patterns of deletion

	Type	Variety	NT14-196093	T003447	NT14-272137	PT53078	NT-3398235	PT61529	Т002229	PT60462	NT14-491054(T009443	PT52334	Nt14-5411837	TM60319	NT14-563251(PT60250	PT60170	NT14-793880:	T010110	T010253	PT53142	NtCCD
	BY	BY21																					
	BY	BB16																					
	BY	TN86																					
	BY	TN90																					
	BY	BY 49																					
	BY	BY 64																					
	BY	ZERLINA																					
Tol	FC	WIKA																					
101	FC	NCBMR 42																					
	FC	KUT 110																					
	DAC	SKR L56																					
	DAC	PBD6																					
	DAC	RTAB																					
	EXP	BEL 61-10																					
	EXP	CHEM MUT																					
	FC	POLALTA																					
	FC	ELKA 245																					
?	FC	WISLICA																					
•	OR	KRU PRO																					
	VR	CASH																					
	VR	ZAMOJSKA 4																					
	VR	KYR																					
	VR	V4K																					
	VR	YP 755																					
S	VR	ITB 31612																					
U	DAC	BAO D21																					
	EXP	BEL B																					
	OR	DRAGASANI																					
	OR	KOSARSKO																					
Expected physical			0			1.5			4	1.2						7.	5					12	•

Testing of 8 individuals for F1 and controls


- Some varieties are allelic to Wika.
- Varieties with intermediate resistance ★ not allelic to Wika
- Zerlina have a deletion on Nt14 but is not allelic
- Polalta looks like allelic to Wika but without a deletion on Nt14

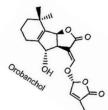
MARKERS VALIDATED ON THE COLLECTION OF VARIETIES AND ON BSB COMMERCIAL LINES

 \mathbb{R}

N°	MS/F/H	Origin	Commercial name	R/S	Т002229	Т002264	T003447
1	Variety	Susceptible control	VD	s			
2	Fertile Line	Susceptible control		S			
3	Hybrid F1	Susceptible control	ITB31612	s			
4	MS line	Susceptible line		s			
5	MS line	Susceptible line		s			
6	MS line	Susceptible line		s			
7	Hybrid F1	One parent tolerant only	BSB 6199	S (het)			
8	Hybrid F1	Both parent susceptible	ITB188	S			
9	Variety	Resistant control	Wika	R			
10	Fertile Line	Tolerant line		R			
11	Fertile Line	Tolerant line		R			
12	MS line	Tolerant line		R			
13	MS line	Tolerant line		R			
14	MS line	Tolerant line		R			
15	MS line	Tolerant line		R			
16	MS line	Tolerant line		R			
17	Hybrid F1	Both parents tolerant		R			
18	Hybrid F1	Both parents tolerant		R			
19	Hybrid F1	Both parents tolerant		R			
20	Hybrid F1	Both parents tolerant	BSB 6190	R			
21	Hybrid F1	Both parents tolerant	BSB 6191	R			

PCR markers and KASP markers available

http://www.bergeracsb.com

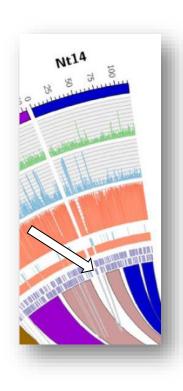

CONCLUSION

resistance

identfied

Solutions

available


- Wika tolerance is related to low broomrape germination. • This tolerance is under the control of a recessive gene on Nt.14.
- Others sources of tolerance have been identified in the collection of varieties, allelic or with a different mechanism.
- User-friendly molecular markers are available to pilot the transfer of Wika tolerance in breeding lines.
- BSB tolerant lines are available.

PERSPECTIVES

- Local structure of the genome still unclear: multiple deletion with local rearrangement, differences according to the genotype.
- Candidate genes have been identified in this area, and are under evaluation.
- Need for segregation tests to assess the new sources of tolerance found in the Imperial Tobacco collection, in order to improve breeding.
- Tolerance to others species of Orobanche will be tested.

Thank you.

Emilie Julio Julien Cotucheau Roxane Volpatti Christophe Decorps François Dorlhac de Borne

Anna Malpica Sonia Bachet Julie L'Humeau

