

CORESTA Joint Study Groups Meeting Smoke Science / Product Technology 2011 - Graz, Austria

Using a Structural Model based on a Class of Generalized Covariance Criteria, to explore the generation process of smoke compounds

Xavier Bry¹, Patrick Redont¹, Thomas Verron², Xavier Cahours²

¹ I3M, Univ. Montpellier II - Route de Mende, 34199 Montpellier Cedex 5, France ²SEITA, Imperial Tobacco Group - 4, rue André Dessaux, 45404 Fleury-les-Aubrais, France

Outline

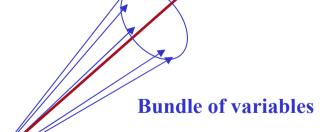
- Brief state of Art
 - From linear modeling to structural equation modeling
- Existing methods and limitations
 - PLSPM, SEM-ML, TC-PM, MB-PLS, GSCA, MCCRM, GLLAM, RGCCA
- New approach THEME-SEER
 - Global criterion, optimization program and properties
- Application to explore the generation process of smoke compounds

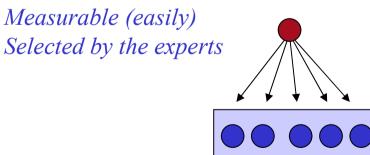
Modeling

A mathematical model usually describes a system by a set of variables and a set of equations that establish relationships between the variables (explanatory variables and dependant variables).

Single relationship Multiple relationships Multiple relationships and equations A E The only identified sources of The only identified The only identified sources source of variation of variation in E are A, B variation in: Path and C E are D and C. and in in E is A **OLS** Modeling MLR D are A and B

The multiple equations is the most realistic approach but we must take into account the fact that the dimensions (variables) are not always totally identified.


Unclear dimensions



The predictive variables (precursors) of a dependent variable (compound):

- can be unknown or not totally known (exploratory phase)
- can be difficult or impossible to measure (for example retention, combustibility **are not observed directly**)

To get round these difficulties, we can replace the unobserved characteristic by several variables related to it

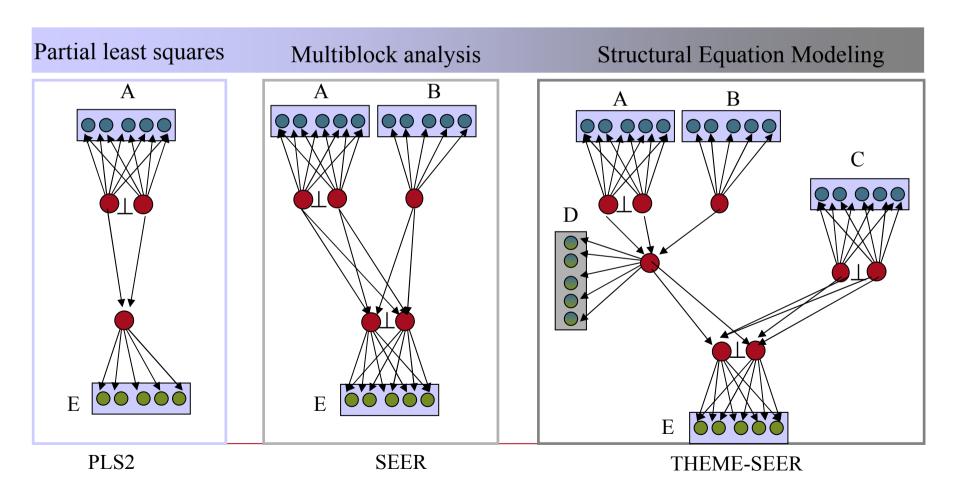
Need to use component-based modeling to reduce the dimension and extract the relevant information

Component-based modeling (1)

PLS

THEME-SEER

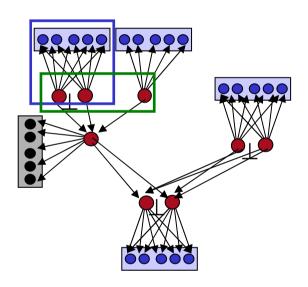
Reduce the dimension and extract the relevant information of a group of variables and measure the importance of the relation between **a dependent variable** and some explanatory variables.


Partial least squares Multiblock analysis Structural Equation Modeling A 0000000

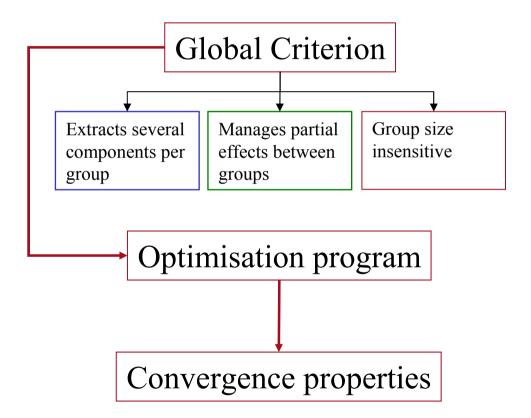
SEER

Component-based modeling (2)

Reduce the dimension and extract the relevant information of a group of variables and measure the importance of the relation between dependent variables and some explanatory variables



Statistical modelling



Thematic Scheme

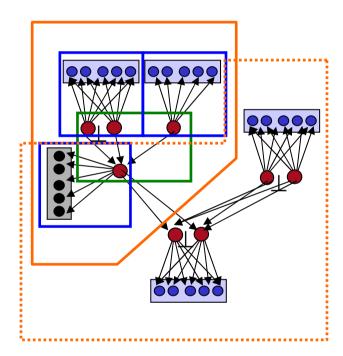
Mathematical Strategy

Structural Equation Methods

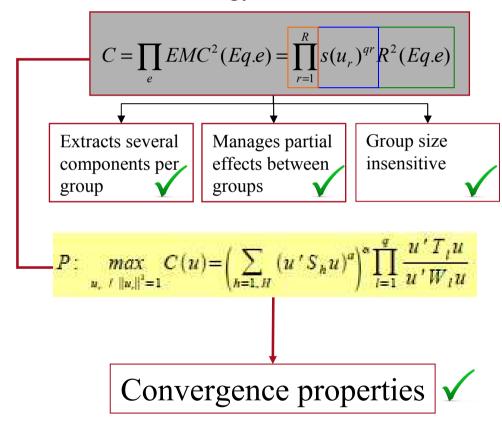
	SEM Method								
	PLSPM	TC-PM	MB-PLS	SEM-ML	GLLAM	RGCCA	GSCA	MCCRM	
Global criterion	X	X	X	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Criterion optimization type	X	X	X	1	1	3	2	2	
Manages partial effects between groups	×	\checkmark	X	\checkmark	\checkmark	X	\checkmark	\checkmark	
No probabilistics assumption	\checkmark	\checkmark	\checkmark	X	X	\checkmark	\checkmark	\checkmark	
Convergence of criterion	X	X	X	?	?	\checkmark	?	?	
Extracts several components / group	X	X	\checkmark	X	X	X	X	\checkmark	
Group size insensitive	\checkmark	\checkmark	\checkmark	X	X	X	X	X	

1 Max Likelihood

3 Max Compound Bivariate Covariance


2 (Alternated) Least Squares

THEME-SEER



Thematic Scheme

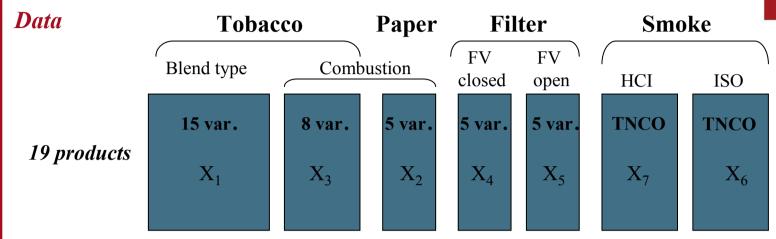
Product of all variances
Linear model fit
For each equation

Mathematical Strategy

THEME-SEER

	SEM Method								
	PLSPM	TC-PM	MB-PLS	SEM-ML	GLLAM	RGCCA	GSCA	MCCRM	THEME-SEER
Global criterion	X	X	X	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Criterion optimization type	X	X	X	1	1	3	2	2	4
Manages partial effects between groups	×	√	×	\checkmark	\checkmark	×	\checkmark	√	\checkmark
No probabilistics assumption	\checkmark	\checkmark	\checkmark	X	X	\checkmark	\checkmark	\checkmark	\checkmark
Convergence of criterion	X	X	X	?	?	\checkmark	?	?	√
Extracts several components / group	X	X	✓	X	X	X	X	✓	✓
Group size insensitive	\checkmark	✓	\checkmark	X	X	X	×	X	\checkmark

1 Max Likelihood


2 (Alternated) Least Squares

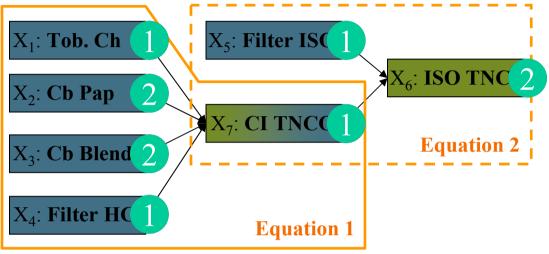
3 Max Compound Bivariate Covariance

4 Max Extended Multiple Covariance

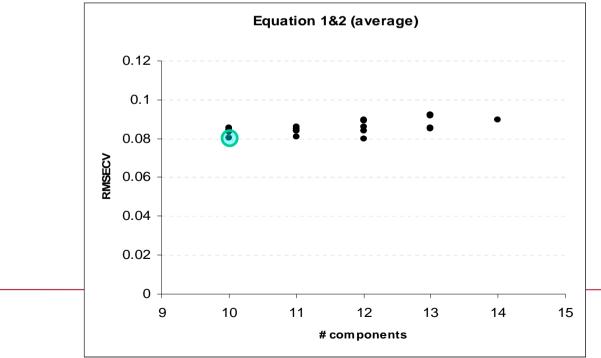
Application: data & thematic concept

Model design motivations

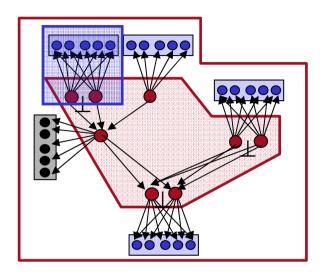
Equation 1:

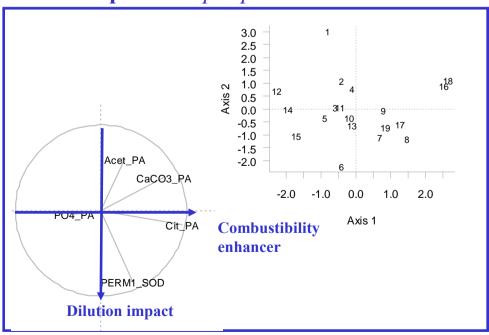

Smoke compounds are generated / transferred to smoke through combustion. Filter only plays a *retention* role (Filter ventilation blocked in intense mode)

Equation 2:


Final output of smoke compounds is conditioned by other filter properties, as ventilation/dilution.

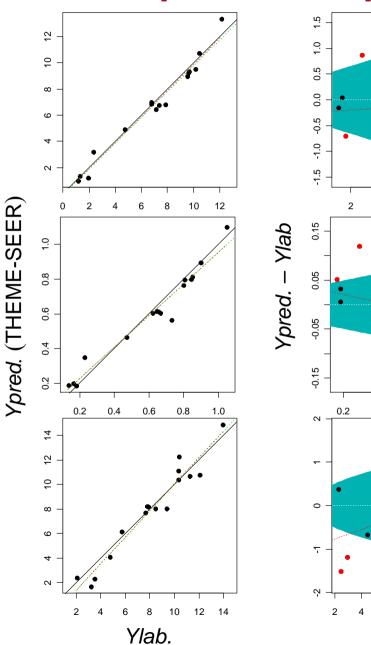
Application: number of components

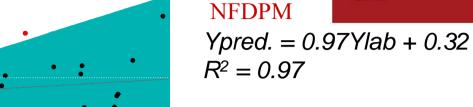



- Initially: K = 2 components per group (total=14 components)
- Remove rank K_r component alternately in each group X_r
 - \rightarrow 6 « shrunk » models
 - → Evaluated *via* cross-validation
 - → Best model selected
- Resume with selected model

Application: Interpretation rules

Factorial plans: Paper parameters




Coefficients

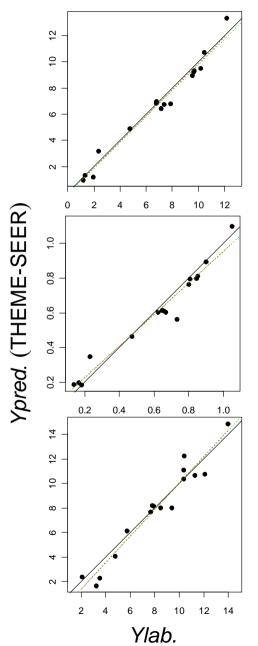
Equation 1					
		NFDPM	NICO	CO	
	F1	-0.02	-0.11*	0.15*	
	С	0.0049	0.0019	-0.0179	
	Mal	-0.0040	-0.0016	0.0146	
	N	0.0200	0.0078	-0.0727	
	PP	-0.0168	-0.0065	0.0609	
	MV	0.0000	0.0000	0.0000	
	Asp	0.0782	0.0303	-0.2839	
	Cit	0.0164	0.0063	-0.0594	
Group1	NO3	0.0197	0.0076	-0.0713	
	Alka	0.0083	0.0070	-0.0302	
	GFS	-0.0022	-0.0002	0.0078	
	NH3	0.1589	0.0616	-0.5766	
	NAB	0.1303	0.0010	-0.0171	
	NAT	0.0047	0.0018	-0.0007	
	NNK	0.0003	0.0001	-0.0012	
	NNN	0.0001	0.0000	-0.0004	
	F1 F2	-0.15** 0.07	-0.075 0.030	-0.136 0.22*	
	Cit	-1.616	-0.064	-0.976	
Group2	PO4	6.834	0.280	2.770	
	Acet	0.443	0.005	2.543	
	CaCO3	-0.200	-0.009	0.008	
	PERM1	-0.036	-0.001	-0.042	
	F1	0.01	0.38***	-0.49**	
	F2	-0.12	-0.28*	0.033	
	Ca	0.0141	-0.0219	0.2285	
	Mg	-0.6190	-0.2500	1.3063	
	Cľ	-0.1413	-0.0738	0.4547	
Group3	PO4	-0.6483	-0.2215	0.9899	
•	K_pc	-0.0458	-0.0311	0.2144	
	Hg	0.0001	0.0000	0.0002	
	РĎ	0.0008	0.0000	0.0008	
	Cd	0.0003	-0.0001	0.0014	
	NO3	0.1135	-0.0050	0.2366	
	F1	0.60***	1.08***	-0.289	
	FL	-0.502	-0.075	0.137	
1	FDENSC	0.095	0.014	-0.026	
Group4	PDEF	-0.047	-0.007	0.013	
1 '	Tria	0.156	0.023	-0.042	
	DIAM	-20.383	-3.055	5.558	
	Weight NTM	-0.050	-0.008	0.014	
Equation 2					
		NFDPM	NICO	СО	
	F1	0.41***	0.44*	0.44***	
	FV	-0.049	-0.004	-0.055	
Group5	PD	-0.049 0.040	0.004	-0.055 0.046	
	PDFNE	-0.072	-0.006	-0.082	
	F1	0.27**	0.26	0.24*	
Group6	NFDPM_INT NICO INT	0.118 1.268	0.008 0.081	0.110 1.184	
	CO_INT	0.154	0.081	0.144	
	OO_IIVI	0.104	0.010	U. 144	

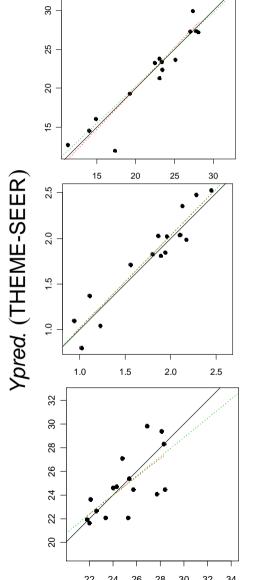
ISO Nicotine prediction quality

0.6

Average

8.0


10 12 14


NICOTINE Ypred. = 1.06 Ylab - 0.02, $R^2 = 0.96$

CO
Ypred. =
$$0.87 \text{ Ylab} + 1.11$$
,
 $R^2 = 0.94$

ISO & Intense Nicotine prediction quality

Ylab.

NFDPM

Ypred. = 0.97Ylab + 0.32 $R^2 = 0.97$ Ypred. = 0.84Ylab + 0.46 $R^2 = 0.88$

NICOTINE

Ypred. = 1.06 Ylab - 0.02, $R^2 = 0.96$ Ypred. = 0.89 Ylab - 0.17, $R^2 = 0.90$

CO

Ypred. = 0.87 Ylab + 1.11, $R^2 = 0.94$ Ypred. = 0.60 Ylab + 10, $R^2 = 0.47$

Conclusions

Theory

- Thematic partitioning allows to interpret components conceptually, and also to analyze the complementarities of thematic aspects. Compared to other multi-group techniques, THEME-SEER:
 - solves the problem of group-weighting;
 - extends PLSR (Extended Multiple Covariance criterion);
 - > allows various measures of component structural strength.

Application

- From the explanatory point of view,
 THEME-SEER allowed to separate the complementary roles, on smoke Compounds, of:
 - Tobacco type (Burley, Flue Cured, Oriental, Virginia)
 - > Combustion chemical enhancers or inhibitors related to tobacco or paper
 - > Filter retention power.
 - Filter ventilation power
- From the *predictive* point of view,
 THEME-SEER gave out a complete and robust model having accuracy within reproducibility limits (ISO regime)