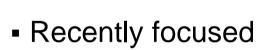


Which parameters are suitable to evaluate e-vapour products puffing behaviour?

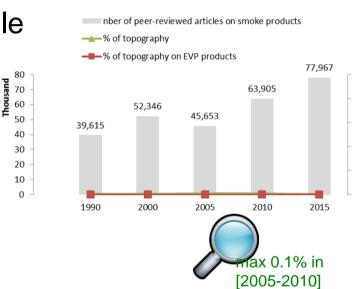
V. Troude¹, T. Walele², G. Duputié¹, R. Perrot¹

1- SEITA Imperial Tobacco. 48 rue Danton 45404 Fleury les Aubrais. France.

2- Imperial Tobacco Limited. Winterstoke Road. Bristol BS3 2LL. United Kingdom



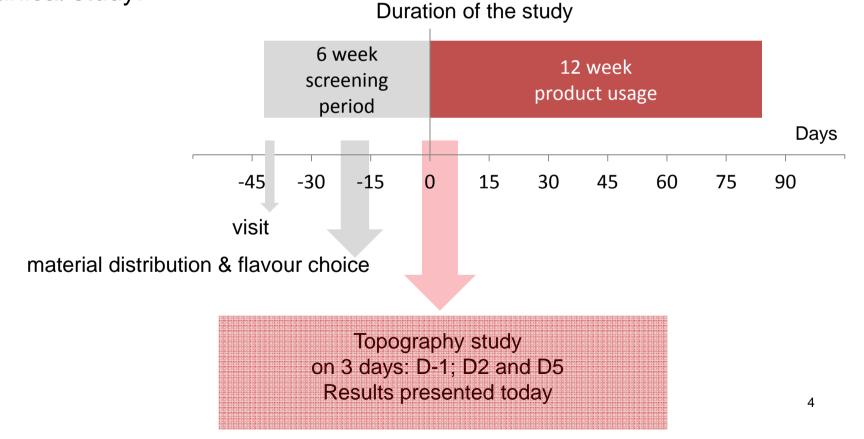
2015 CORESTA Joint Study Groups Meeting Jeju Island. South Korea. 4-8 October


Product usage pattern

Background

- On classical smoking products: limited peer-reviewed publications available
- FDA lack of data

- Coresta ECIG Task Force
- Smoking Behavior Sub-group
- The growing popularity of e-vapour products (EVP) carries with it an increasing interest in the examination of vaping behaviour



Context

- This trial is to evaluate a first generation e-vapour product when used by usual smokers of conventional cigarettes
- As part of a product stewardship program to evaluate and assess e-vapour products prior to placing them on the market, a Randomised Parallel Group Multi-centre Study was conducted
 - Primary objectives: safety parameters (includes adverse effect, lung function tests, vital signs & clinical laboratory parameters...)
 - Secondary objectives: investigate potential effect of switching to the EVP on selected biomarkers of exposure, of effect, craving or withdrawal symptom
 - Exploratory objectives include the evaluation of product usage patterns

Experimental Method /1

- Study design
 - Puffing topography evaluated during the confinement period of this clinical study:

Study design

Between dream and reality

- Two flavour variants provided to 40 healthy adult smokers
- Randomised to either the EVP arm or conventional cigarette (CC) arm at a ratio of 3:1 respectively

 Volunteers / puff number with assessable puffing topography parameters:

Visit	CC	EVP		Total users	Total
		EVP-1	EVP-2	per Day	#puffs
Baseline (D-1)	38			38	1187
Day 2	6	21	5	32	1937
Day 5	5	21	5	31	2543
Total users per product	49	42	10		

Experimental Method /2

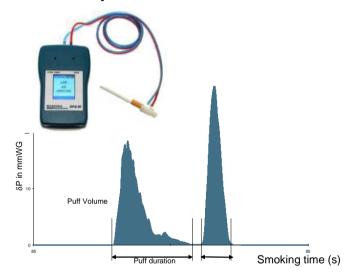
 Study material – non-invasive measurement device: <u>S</u>moking Portable Analyser Mobile (SODIM®, France)

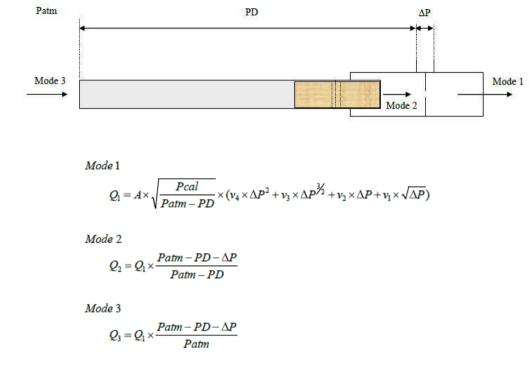
- Study product
 - EVP : 1st generation (cartridge)

provides 20-40 puffs depending on individual usage pattern of the product

– PG/Gly base with 2%Nicotine (w/w), 2 flavours (EVP-1 & EVP-2)

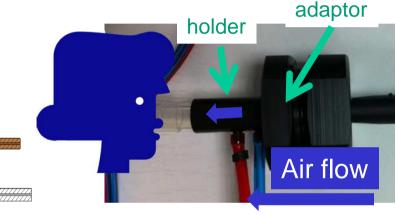
A new cartridge used at the beginning of each day, with a fully charged battery


- at libidum CC or EVP use for a 4 hour period.
- Statistical analysis An analysis of variance (ANOVA) with the study arm as a factor


Results & discussion

- Validated topography device for use with e-cigarettes
 - EVP specification
 - Results on SM450 smoking machine
- Puff topography results from the 4-hour ad-lib use period
 - Overall mean per product
 - Individual puff per product
 - Distribution of puffs per product
- Puff topography results : evolution over the 5 Day-study, CC and EVP users

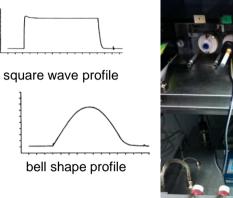
Expression of the flow

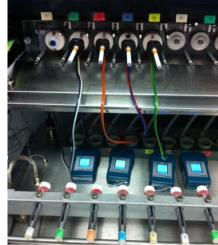


- Outcomes of the SPAM SodAfc41 v3.20.5
 - Time (puff start)
 - Pressure capabilities: Mean Pressure Drop. Peak pressure Drop
 - Flow capabilities: Puff Volume, total volume during the session, Puff Duration

EVP specification

- Product: creativity in EVP shape. mouth end (round, oblong, trapeze, ...)
 - Adaptor specifically designed by SODIM
 - fit with various shapes




- 3 step validation
 - Flow calibration of each holder.
 - Adaptor effect: confirmation of no bias due to the dead volume
 - Entire set-up (EVP+adaptor+holder): accuracy & precision against SM450 smoking machine (sin and square wave).

Validated topography device for use with EVP

Accuracy of the metrics

	Precision						
V (mL)	r, repeta	ability (%)	R, intermediate precision (%) in 3 days				
	BS	SW	BS	SW			
35	2.1	2.7	2.3	3.8			
55	1.5	1.5	2.1	1.9			
100	1.9	2.7	3.2	3.4			

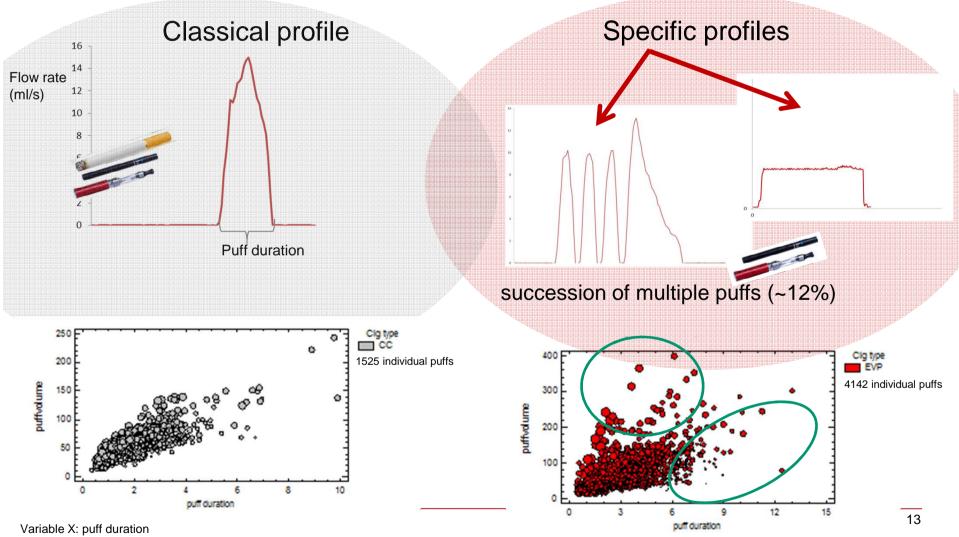
- EVP +adaptor: the SPA/M performed well across a range of puff volume (20 – 100 mL), puff duration (1 – 9.9 s) using two puff profile sin and square wave.
 - Largest absolute error +4.7 mL for V=30 mL (SW)
 - Puff volume recorded where Flow rate within the puff : 1 120 ml/s
 - Puff frequency 50 ms (and 20 ms)
- Accuracy: % difference from target results <10% Intermediate precision results <5% over 3 days

Results & discussion

- Validated topography device for use with e-cigarettes
 - SPAM & EVP specification
 - Results on SM450 smoking machine
- Puff topography results from the 4-hour ad-lib use period
 - Overall mean per product
 - Individual puff per product
 - Distribution of puffs per product
- Puff topography results : evolution over the 5 Day-study, CC and EVP users

4-hour ad-lib use period results

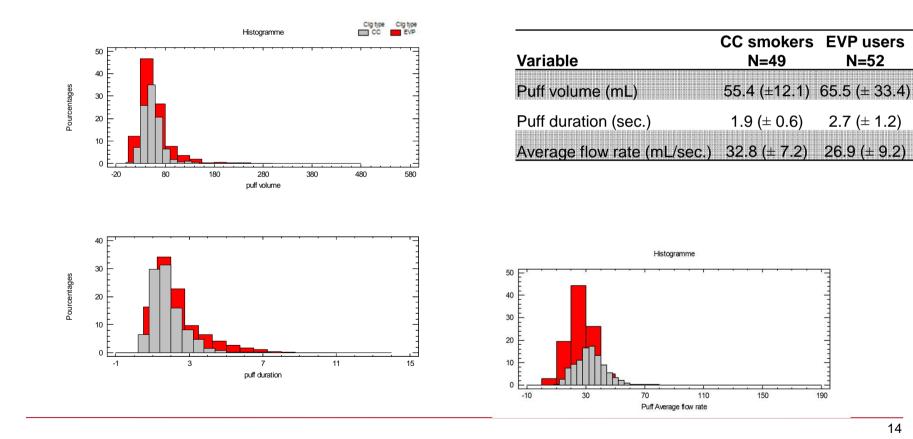
Overall mean per product, per user


All variables: Mean figures show a statistically significant difference between CC and EVP users (p<0.01)

Mean and standard deviation

EVP-1 (N=42) & EVP-2 (N=10) gathered: no significant difference between the two flavours, except puff number

Ad lib puff pattern results

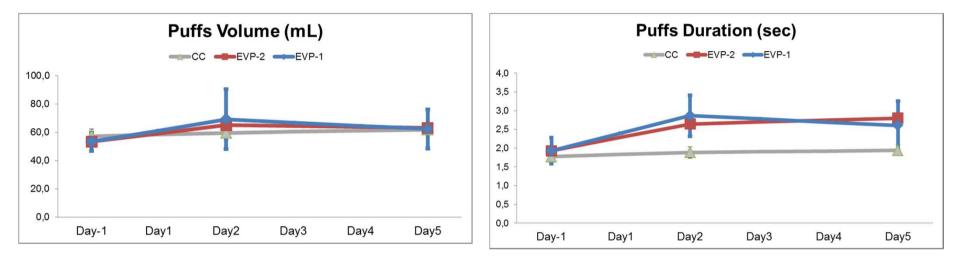

Individual puff profile

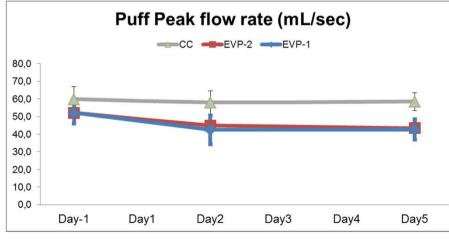
Variable X. pull dufation Variable Y:puff Volume Bullet size= Puff Peak flow rate

Distribution of puffs per product

 Distribution (expressed as a percentage of puffs) across a range of values for flow rate, puff volume and puff duration

N=52


2.7 (± 1.2)


Results & discussion

- Validated topography device for use with e-cigarettes
 - EVP specification
 - Results on SM450 smoking machine
- Puff topography results from the 4-hour ad-lib use period
 - Overall mean per product
 - Individual puff per product
 - Distribution of puffs per product

 Puff topography results : evolution over the 5 Day-study, CC and EVP users

Puff topography results : evolution over the study

No Statistically significant differences for the control CC over the 3 days. Mean and standard deviation

Conclusions

Is the device suitable for the study?

- Device:
 - Conventional topography device with adjustments (*inc.* adaptor calibration) can be used to assess the vaping behavior.
 - The SPAM is a suitable device to measure topography
- Within this particular study:
 - EVP vs. CC: short time study triggers an significant increase in puff duration, puff volume and lower flow rate.
 This is stable between Day3 and Day5.
 - EVP pattern highlight ~12% of multiple puffs.

Conclusions

Which parameters are suitable to evaluate e-vapour products puffing behaviour?

- Classical parameter (puff Volume, duration, flow rate) obtained with conventional topography device with adjustments
- Additional parameter could be useful to reflect quick succession of multiple puffs

Open to discussion (via increasing peer reviewed publication or Smoking Behavior Subgroup meeting)

Acknowledgements to all team in Les Aubrais (France), Bristol (UK) and Hamburg (Germany).

Visit our Scientific Research website: www.imperialtobaccoscience.com

