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What is dosimetry?

Dosimetry is “the study and practice of measuring or estimating the internal dose of a substance in
individuals or a population. Dosimetry thus provides an essential link to understanding the
relationship between an external exposure and a biological response”.

N - N
*Talaat, K.,et al., 2019. Radiation dosimetry of inhaled radioactive aerosols: CFPD and MCNP transport simulations of radionuclides in the ok B/I&DAEEISE SClrc N
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lung. Scientific reports, 9(1), pp.1-21.
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oxicology

"All things are
poison, and nothing
IS without poison;

the dosage alone
makes it so a thing Is
not a poison”
Paracelsus 1538.
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What is in vitro dosimetry?

* Measuring the amount (concentration)
of a substance that enters the cell.
* Using markers such as nicotine

* Indirectly: looking at deposited mass,
measuring mass loss of a pod for example
in EVPs for ALl exposures

* Directly: lysing cells and measuring the
compounds of interest inside the cell

* Determining dose, we can more
accurately understanding the cellular
response to an exposure and it
physiological relevance
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How do you expose cells to smoke/aerosol and some
considerations to take in to account

* What fractions of smoke/aerosol can cells be exposed to

* 2D submerged cells vs whole smoke/ aerosol exposure
* Examples of common exposure systems
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Different fractions of smoke/aerosol can be trapped or
alternatively cells can be exposed to whole smoke aerosol

[
Cigarette I TTTTTTTTTTTT . whole Smokeilng
n o ok ol trapp ::; = Whole smoke/ aerosol
HTP | S 53 aeros 5 insolvent
E-Cigarette G 7SpD Y,
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Liquid '
Air Interface H=—>
Liquid e i
A . - GVP
rensier S Al capreaona
;,ﬂ' Agar K CFP and eluted
Cells in Interface
suspension Cells on surface
\ ) ) Does not require specialist exposure chambers
and delivery systems. Doses are added directly to
: . : . cell media
Direct cell exposure requires technical expertise

and equipment to enable cell exposure

Pratte, P.et al., 2017. Human & experimental toxicology 36, no. 11: 1115-1120



Various techniques are used to expose cells to chemicals

without killing cells /

Choice of solvents can
influence the types of
compounds trapped.

Some solvents can only

be added in limited
concentrations e.g
Ethanol, DMSO*

KSubmerged 2D cultures \ ﬂ: 2D tissues exposed to trapped samples
Dose added to cells o
media is accurately Air liquid
defined transfer
Submerged Dose which are Submerged Y
Culture exposed to cells cells Culture -
are cannot be | |. —
measured easily —

\
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(C: Air =liquid interface
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* Choice of solvent may limit trapping efficiency or amount that can be added to the test system



Exposure of solid particles is different for submerged cultures
and via the Air liquid interface

For submerged culture, solid particle size affects transport

rates to the cell surface.

e« <~10 nm: relatively fast; controlled mainly by diffusion

>~200 nm: relatively fast, particularly for dense particles

like the metals (due to sedimentation)

e 10-100 nm: slower transport; controlled by diffusion and

sedimentation (neither particularly effective)

Submerged Culture

—
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Hinderliter, P.M.,et al., 2010. ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity zok IBMFI;AEEIISE S C | © N C
studies. Particle and fibre toxicology, 7(1), pp.1-20. R 4
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Multiple exposure systems are available for in vitro exposure
of cells to whole smoke/aerosol at the ALI

/ IB’s- SAEIVS - Smoke AeroscN Borgwaldt smoking machine Vitrocell”smoke robot CULTEX

Exposure In Vitro System
Integrated Smoking machine

\ Transwell Insert 96 MWP / Transwell

The smoke machines are connected to exposure chambers and represent the current state-of-the-art in ALl exposure to fresh smoke/ aerosol
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* Fundamental differences in respiratory structure across
animal species

* VVarious forces depending on particle size can affect particle
deposition

* For hydrophilic particles, particle size can vary as you move
along the respiratory tract

* As you move down the human respiratory tract cell types
change, uptake depends on where in the lungs the particles
are deposited

& IMPERIAL =
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1. Fundamental differences in lung geometry across species:
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Rats are obligate nose breathers
Rats are predominantly monopodal branching in the lung
Rats do not have respiratory bronchioles, alveolar sacs are reached after 3-13 branches of the lung

My IMPERIAL A
A: Clippinger, A.J. et al., 2018. Alternative approaches for acute inhalation toxicity testing to address global regulatory and non-regulatory data requirements: An international a‘k m‘
workshop report. Toxicology In Vitro, 48, pp.53-70.
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2. Various forces can affect particle distribution.

1.0 > Deposition depends on inhaled particle
"""""" normal adt;l}zn:a?;h breather sizes, lung geometry and breathing pattern.
= N, f;’gim, total & ] Uptake of water by droplets depend on
S ‘1“ 7 physical properties
E 0.6 ".“ :.-". Sub-micron particles are mainly deposited
E A “‘t‘ /;:E:Ei\-._' ' by impaction and sedimentation
E Pk \ L S ;,f' Nano sized particles are mainly deposited
E_ 02 B ) t;‘z'; bronchi * ~_ f’_, by diffusion
/ ‘*-1‘:_:,___ . ’::‘?'--... — Deposition decreases with decreasing
i particle size (10-1 um). Then increases due
10.001 0.01 0.1 1 to increased availability of particles at the

Particle Diameter (um) alveoli.

ET= Extra thoracic region kY
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Hussain, M., et al., 2011. Lung deposition predictions of airborne particles and the emergence of contemporary diseases, Part-I. Health, 2(2), pp.51-59.



3. Liquid particle size is not always constant and can change phase

Particles can change size as they move down the
M respiratory tract

Warmer and more humid : - ‘ Nucleation

Inertial '

------
P T TR [ J—— L.

impaction e - :
P e T e . - @ Evaporation /Condensation
>

@Q—0 - . Coalescence/breakup

Electrostatic
deposition

Sedimentation

Diffusion
* Liquid droplets close to airway walls only grow initially ; liquid droplets in the center of

the airway first shrink, then grow

e Changes in droplet size distribution width depends on conditions during inhalation.

My IMPERIAL - A
PRI SCIENC
Modified from Grasmeijer, N.,et al., 2016. An adaptable model for growth and/or shrinkage of droplets in the respiratory tract during inhalation of R 4

aqueous particles. Journal of Aerosol Science, 93, pp.21-34.



Cell types change as you move down the respiratory tract,
which affects absorption ,
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For measuring dose delivered, many possibilities are
available

Concentration or dose of individual constituents or total mass

* PG, Glycerol, nicotine, carbonyls, flavours, TPM etc

* Trapping in DMSO, cell culture media, PBS

Collected on to glass coverslips or cell culture inserts

e uses standard Analytical Chemical techniques HPLC, GC £MS, LC £tMS

Directly weigh solid particulate matter on Quartz Crystal Microbalance (QCM)

Particle concentration and/or size distribution
Using Laser photometer and a cascade impactor

* CO, CO,, other gases

* NDIR, FTIR gas analysers

Typical aerosol exposure measurements are generally limited to one or a few analytes

Cascade
analysed in one of the replicate wells (e.g. nicotine, glycerol, TPM) or by using in-line impactor

(laser photometers) to monitor equipment.
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SAEIVS (Smoke Aerosol Exposure In Vitro System) efficiently
delivers smoke to cells.

Exposure chamber 1
Smoke / aerosol exposure

Smoking
chambers
(SC1-5)

Exposure chamber 2
sham exposure

SAEIVS: ~20% loss of smoke
between cigarette (A) and

exposure chamber (B); aerial
view.

For 100% smoke delivery, differences between measurements at the smoking

(A) and exposure (B) chambers were calculated
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Correlation between OD400 and nicotine deposition
in wells exposed to the diluted smoke on the 96 MWP
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Minimal effects of cell surface on deposition rate

of particles on to glass

« Empty wells had a higher deposition *

of nicotine possibly due to static
attraction

* The surface of glass slides added to
the trans wells had minimal effects
onh nicotine deposition
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EX355/EM485

@d (2020) Charles River Study Number 00999545

Characterisation of other Multi chamber exposure systems

* Initial instrument qualification/validation is critical
* Reproducibility/variability between replicate exposure wells

* Ideally not more than £15% across replicates

* %CV generally inversely proportional to concentration
* Reproducibility across experiments
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Use of a series of impingers to trap chemicals from smoke / aerosol for submerged
cultures

Trapping of particulate mass from 3R4F and nicotine and carbonyls from 1R6F in 3 connected impingers
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* Dosimetry is key linking exposures to Adverse Outcome Pathways
(AOPs)

e Using in vitro doses to model human adverse concentrations
* Finally an example of a 3D repeated study
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Dosimetry is key linking exposures to Adverse Outcome

Pathways (AOPs)
exposure

Solubility

“Accurate dosimetry characterization
requires determining the amount, rate,
distribution, and form of a substance

External Internal Particle size, density, delivered to the target tissue of interest”
Exposure % ' Dosimetr deposition
oeibichE  Dosimetry Chermical reactivity (Kuempel et al., 2015).
ADME at exposure sit

The Progress of Adverse Events Following Exposure

* Inflammation e  Goblet cell *  Chronic bronchitis
*  Cytokines and ) . *  Emphysema
* Initiation of signalling chemokines hyperplasia *  Tissue remodelling * Small airway disease

* Increased

pathways

* Oxidative stress

*  Protease/ anti-

protease imbalance

*  Monocyte

recruitments

* Impaired cilia function
¢ Tissues destruction

* Collagen deposition

= Chronic inflammation

*  Fibrosis

susceptibility to
infection and air
pollution

Chronic Respiratory
Disease
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Czekala et al., 2021 Current Research in Toxicology, 2, pp.99-115.2021; Kuempel et al., 2015.. J. Occup.Environ. Hyg. 12 (Suppl. 1), S18-40.



Using in vitro doses to model human adverse concentrations

Point of departure (POD)

Human
from in vitro assay (UM) QIVIVE

Exposure
S7TY mg/kg bw
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. ~N Comparing
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- J g )
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QIVIVE ( Quantitative in vitro to in vivo extrapolation) —using kinetic modeling, to link the measured in vitro POD to the corresponding vivo exposure that would be R

expected to result in an adverse health effects. * Peng, Y.,et al., 2021., In Vitro and In Silico Approaches. Metabolites, 11(2), p.75.



Imperial example: Using ALI grown NHBE (MUCILAIR™) human cultures
demonstrated reduced toxicity of EVP compared to CC, repeated
exposures for 28 days-

Washing Procedure

Concentration of Nicotine Delivery to MWP

XXk
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v LR B b Y

! 1
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et
CBF and CAA Measurements
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—
TEER Measurements 60 45,50

Test Product & Filtered Air

Concentration [ug/ml]

IL-13

Procaterol

Immunohistochemistry
(Alcian Blue + H&E, MUC-5AC
and Fox-J1)
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Czekala, L., et al., 2021.. Current Research in Toxicology, 2, pp.99-115.



28 Day repeated study marked difference in EVP vs CC in
histology, Cilia Beat frequency (CBF), Active Area (AA)
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Czekala, L., et al., 2021.. Current Research in Toxicology, 2, pp.99-115.



* Dosimetry is key to better understanding biological responses in in
vitro assays. This better understanding allows the determination of
physiological relevance of results

* Chemical composition and deposition of aerosols in the respiratory
tract depend on many factors including particle size (gas—liquid
partitioning is important)

* Physiochemical characteristics of the chemicals and ADME at the site
of exposure are important.

 Different ENDs products and Tobacco require different markers

* To ultimately extrapolate in vitro doses to human relevant doses
requires PBPK modelling which is beyond the scope of this session.

ADME - Absorption, Distribution, Metabolism, Excretion IMPERIAL S
PBPK - Physiologically Based PharmacoKinetic modelling /= BRANDS



Acknowledgements

| would like to thank

e Roman Wieczorek and Leon Stankowski
as co authors of this presentation

* Fan Yu for help with the graphics
* The Pre-clinical Team at Imperial Brands

* Biological Toxicology Laboratory
Hamburg

* The non routine chemistry department

M IMPERIAL n |
PN S CIENCE



Different fractions of smoke/aerosol can be trapped or
alternatively cells can be exposed to whole smoke aerosol

'
Cigarette RN TTTTTTTITIIT whole smoke/

HTP G o BRI aerosol trapping

E-Cigarette G 7cpD

Does not require specialist exposure chambers
and delivery systems. Doses are added directly to

: . : . cell media
Direct cell exposure requires technical expertise

and equipment to enable cell exposure

Pratte, P.et al., 2017. Human & experimental toxicology 36, no. 11: 1115-1120



