NEXT GENERATION PRODUCTS Assessment of the Cardiovascular impact of e-vapour and heated tobacco products using New Approach Methodologies

ACT 45th Annual Meeting November 17-20th 2024, Submission ID: 1830780

Matthew Stevenson¹*, Fiona Chapman¹, Edgar Trelles Sticken², Sarah Jean Pour², Roman Wieczorek², Luuk de Haan³, Linda Gijzen³, Matthias Gossman⁴, Bettina Lickiss⁴, Liam Simms¹ ¹Imperial Brands PLC, 121 Winterstoke Road, Bristol, BS3 2LL, UK, ²Reemtsma Cigarettenfabriken GmbH, An Imperial Brands PLC company, Albert-Einstein-Ring-7, D-22761, Hamburg, Germany, ³Mimetas B.V., Biopartner Building 5, De Limes 7, 2342 DH Oegstgeest, The Netherlands, ⁴InnoVitro GmbH, Artilleriestraße 2, 52428, Jülich, Germany *Corresponding author's e-mail: Matthew.Stevenson@impbrands.com

INTRODUCTION

Imperial Brands understands that smoking is a cause of serious disease in smokers including lung cancer, heart disease and emphysema. The greatest risk of smoking related diseases comes from burning tobacco and inhaling smoke containing around 7,000 chemicals. While science suggests that nicotine is addictive and not risk-free, Public Health experts worldwide have concluded that it is the toxicants in cigarette smoke generated by burning tobacco, and not nicotine, which is the primary cause of smoking-related disease. Tobacco Harm Reduction (THR) refers to strategies designed to reduce the health risks associated with tobacco smoking. Next Generation Products (NGP), like Heated Tobacco Products (HTP) and E-Vapour Products (EVP), deliver nicotine without burning tobacco so have the potential to play a role in THR.

There is a need for methods to assess the impact of products such as EVPs and HTPs on smoking-related disease endpoints, but also to detect any potential new hazards which could occur with these, and other novel innovative products. Here we present data obtained comparing in vitro cardiovascular models' responses to EVPs and HTPs, to those from a cigarette in a variety of in vitro New Approach Methodologies (NAMs). We exposed the various NAMs, to cigarette smoke and aerosol (EVP & HTP) extracts bubbled through phosphate buffered saline or cell medium, as an appropriate systemic exposure technique.

METHODS

2.1 Test Articles

- 1R6F Reference Cigarette (University of Kentucky)
- Heated Tobacco Product (HTP), "PULZE" with "iD" tobacco stick
- E-vapour product (EVP), blu pod-based system with tobacco flavour pod
- Both NGPs were obtained from the EU market.

2.2 Smoke / Aerosol Extract Generation method

Smoke and aerosol from test products were generated with a Vitrocell VC10s (Vitrocell, Munich, Germany) smoking machine. Smoke or aerosol extracts were prepared by bubbling the sample aerosol into 3 in-line Impingers each containing 10 mL of either Phosphate Buffered Saline (PBS) solution or cell media (See Figure 1). A total stock solution of 30 mLs per test article was used.

Figure 1: Bubbling smoke/vapour exposure system

Trapped nicotine was quantified within the aerosol and smoke bubbled PBS (bPBS) or Media (bMed) samples, using liquid chromatography with tandem mass spectrometry (LC-MS/MS) with an AB Sciex API 6500 QTRAP (SCIEX, Framingham, MA, USA) using nicotine-d4 as the internal standard.

2.3 Biological Assessment

Scratch Wound Assay: Human umbilical vein endothelial cells (HUVEC) were scratch wounded and exposed to different concentrations of bubbled medium extracts (bMed). A WoundMaker[™] device was used to conduct the scratch in the cell monolayer. Wound healing is measured as the relative wound density (RWD) over time as calculated by image-based data evaluation. An iterative scanning analysis over 30h was performed with the IncuCyte ZOOM®1.

Cardiomyocyte contractility and cytotoxicity: iCell hiPSC-derived Cardiomyocytes were exposed to the test articles and assessed with the CardioExcyte 96[™] and FLEXcyte 96[™] systems2. The FLEXcyte 96 system, cultures cardiomyocytes on ultra-thin silicone membranes, mimicking the mechanical environment of native human heart tissue. Rhythmic contractions deflect the membranes, quantified by capacitive distance sensing. Parameters analysed were contractile force (AMP), beat rate (BR), beat rate regularity (BRR), rising time (RT), falling time (FT). The time range of observation was 0 - 24 hours posttest article exposure. The CardioExcyte 96 is an impedance-based system where cardiomyocytes are cultured on gold electrodes, enabling label-free and continuous quantification of electrical impedance as a measure of monolayer integrity.

High Content Screening (HCS): Human coronary artery endothelial cells (HCAECs) were exposed to increasing concentrations of bubbled medium extracts (bMed) for either 2 or 24h and cellular live staining with subsequent fixation was applied. Assessment utilised the HCS device (Cellomics array scan XTI); a staining kit to detect generation of reactive oxygen species (CellRox[™] green) and an inhouse method for quantification of GSH based on the property of monochlorobimane to bind reduced GSH. The subsequent impact of 1mM N-Acetylcysteine (NAC - a ROS scavenger) supplementation was also determined

Organ-on-a-Chip: HCAECs were cultured on an OrganoPlate[®]2-lane chip (Mimetas BV) combined with THP-1 monocytes under flow conditions3. THP-1 monocytes were exposed to bPBS, with the resulting conditioned medium being added to the HCAEC vessels, and the following endpoints assessed: Oxidative stress (monochlorobimane added to cultures), ICAM expression (immunofluorescent readout), monocyte adhesion (immunofluorescent readout) and inflammatory marker release in medium (ProCartaPlex Inflammation 20-plex (Thermo Fisher Scientific).

REFERENCES

[1] Chapman F, Sticken ET, Wieczorek R, Pour SJ, Dethloff O, Budde J, Rudd K, Mason E, Czekala L, Yu F, Simms L, Nahde T, O'Connell G, Stevenson M. Multiple endpoint in vitro toxicity assessment of a prototype heated tobacco product indicates substantially reduced effects compared to those of combustible cigarette. Toxicol In Vitro. 2023 Feb;86:105510. doi: 10.1016/j.tiv.2022.105510. [2] Goßmann, M., Frotscher, R., Linder, P., Neumann, S., Bayer, R., Epple, M., Staat, M., Artmann, G. M. (2016). Mechano-Pharmacological Characterization of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells. Cellular physiology and biochemistry : international

journal of experimental cellular physiology, biochemistry, and pharmacology, 38(3), 1182–1198 [3] Chapman F, de Haan L, Gijzen L, Strijker W, Sticken ET, Pour SJ, Wieczorek R, Haberstroh F, Otte S, Nahde T, Simms L, Stevenson M. Optimisation of an in vitro human cardiovascular model on-a-chip for toxicological assessment of nicotine delivery products. Front Toxicol. 2024 Jun 13;6:1395670. doi: 10.3389/ftox.2024.1395670.

RESULTS

3.1 Dosimetry: Nicotine levels in bubbled PBS / medium extracts

in Cigarette, HTP and EVP adult users ranged from 5 – 20 ng/ml.

3.2 Biological Results

CONCLUSIONS

In summary, the 1R6F cigarette bubbled extracts induced several markedly reduced or no effects at much higher exposures. The NAMs These results add to the weight-of-evidence that the tested EVP and biological effects in a variety of NAMs, including cellular dysfunction, used for this assessment sensitively detected toxicity from 1R6F HTPs have the potential to offer a harm reduced alternative to smoking oxidative stress, disrupted contractility, immune cell recruitment and cigarette at low exposures and could also proinflammatory effects. In contrast, HTP and EVP extracts displayed NGPs at the higher, and therefore less potent concentrations.

FIND OUT MORE

• To simulate the compounds absorbed into the blood stream following inhalation of cigarette smoke or aerosol from HTP or EVPs, we employed PBS or cell media as an exposure technique. Cell media has the benefits of exposing cells to higher levels of smoke / aerosol components present (up to 97% w/w inclusion), whereas PBS is limited to a maximum concentration in some techniques of up to 10% w/w. However, PBS has the benefit of chemical simplicity and can be used in a wide variety of tests without significant levels of method optimisation. • Both Media and PBS, captured supraphysiological levels of nicotine from all three test items, with the nicotine recorded across bubbling runs for: PBS = 1R6F: 225µg/ml, ATP: 333µg/ml, & EVP: 504.4µg/ml). NOTE: physiological levels of nicotine recorded across bubbling runs for: PBS = 1R6F: 217µg/ml, and media = 1R6F: 225µg/ml, and media = 1R6F: 225µg/ml, WTP: 333µg/ml, WTP: 334µg/ml).

meaningful contribution to tobacco harm reduction.

- Cell Count: No significant disruptions to cell count were observed for the 2h treatment for any of the products (\pm NAC). Following 24h of exposure severe toxicity was seen for 1R6F cigarette bMed but this was nullified upon NAC addition. Mild disruptions to cell count were observed at 24h treatment with HTP or EVP bMed. These were nullified with NAC.
- Glutathione depletion: All products were seen to deplete GSH at the 24h time points. The 1R6F bMed was the most potent test article, with it having a MEC of 7.3µg/ml and 25.3µg/ml nicotine (24h±NAC respectively). HTP and EVP bMed depleted GSH at 6 - 37fold higher concentrations.
- **ROS induction:** Reproducible ROS induction was seen in both treatments 2h and 24h for 1R6F bMed (>11.3µg/ml), with NAC largely reversing this. In contrast, HTP induced this markedly higher concentrations (133.4µg/ml) than 1R6F, whilst EVP didn't induce any ROS up to 355.7µg/ml.
- **GSH Depletion:** 1R6F bPBS conditioned medium elicited dose dependant reductions in glutathione levels, indicating increasing levels of oxidative stress (Figure 7). This trend was also observed for the HTP (at four-times higher concentrations), whilst no significant changes were observed for EVP.
- Monocyte adhesion: Dose dependent increases in monocyte adhesion were observed for all three test articles. These were only significant at the respective highest concentrations applied 1R6F: 5% bPBS vs HTP/EVP: 20% bPBS.
- ICAM-1 expression: There were no clear trends in ICAM-1 (a cell surface protein involved in the inflammatory response) expression, potentially due to high variability in responses.
- Inflammatory markers (data not shown): 1R6F was the most potent test article, followed by HTP and EVP bPBS. 1R6F bPBS induced 18 markers, notably, e-selectin, pselectin, ICAM-1, IFN-alpha and IL-6.

